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Abstract of the Dissertation 

Multiscale Modeling of Peptides and Star Polymeric Systems 

by 

Amber Carr 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2013 

In the field of structural biology, the synergy between theoretical and experimental 

approaches has lead to great advances in our understanding of the structural ensembles and 

dynamic behavior of biomolecules.  Despite the successes of biomolecular simulation within the 

context of these goals, there remain limitations in the ability of this methodology to accurately 

model protein structure and dynamics, and to solve problems efficiently in terms of the time 

required by the work and the computational resources required.  Biomolecules such as proteins 

exist on a rugged free energy landscape, which limits the extent of conformational space that can 

be visited in a single simulation.  The development of enhanced sampling techniques employs 

manipulation of the formulation of the system's energy function and equations of motion in order 

to efficiently sample slow events such as large conformational changes and rare events such as 

transitions between two states, and to increase the volume of conformational space that is 

available to the system under study.   

 This work outlines two methods in the computational study of protein folding which aim 

to enhance conformational sampling while reducing thecomputational demands of the 

simulation.  One common strategy of enhancing conformational sampling that has been 

incorporated into many simulation algorithms is to periodically afford the simulated molecule the 

opportunity to escape from energy minima and to thereby sample a much larger volume of phase 

space than by conventional methods.  In the self-guided Langevin (SGLD) formalism, low-

frequency modes of motion of the protein are enhanced in order to allow the protein to cross 

potential energy barriers.  We have applied SGLD to three model peptides in implicit solvent in 

order to examine the effect of the method’s two adjustable parameters on the peptides’ resulting 

structural ensembles and folding rates.  The model systems are of similar sizes but differing 

topologies, which allows for examination of transferral of parameters between systems. 

 Another strategy of enhancing sampling is an extension of parallel-tempering Monte 

Carlo to molecular dynamics.  In this method, known as replica-exchange molecular dynamics 

(REMD), periodic attempts are made to exchange structures that are simulated at different 

temperatures, and a random walk in temperature space is achieved in order to surmount 
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conformational barriers in the energy landscape.  Variants of this technique have been developed 

over the years in order to increase the efficiency of REMD simulations of biomolecules.  In 

particular, approaches have been developed in which a structural reservoir is used to decouple 

the high-temperature search for structures from the exchanges and annealing which occur at 

lower temperatures.  It has been shown that the contents of this reservoir need not comprise a 

Boltzmann-weighted ensemble; any ensemble of structures may be used as long as its probability 

distribution is known.  Expanding on this method, we have developed an algorithm to further 

enhance the efficiency of reservoir REMD through the inclusion of a weight factor that relates 

the relative probabilities of the highest-temperature replica structure and the structure in the 

reservoir under exchange.  In this work, we outline attempts to apply this method to the model 

system alanine dipeptide, and discuss the results obtained using a coarse-grained model that 

considers only the potential energy of the dipeptide as a function of its dihedral angles and does 

not consider its atomistic degrees of freedom. 

Finally, the application of simulation methodology to a non-biological self-assembling 

polymeric system on the nanoscale is demonstrated in this work, and its potential application to 

the field of targeted drug delivery is discussed. Diblock star copolymers are self-assembling 

nanoscale systems that have shown great potential in the field of targeted drug delivery in the 

human body.  Intriguingly, these star polymer systems bear many important similarities in 

structure and composition to proteins, being composed of linear polymeric chains of repeating 

units which self-assemble with hydrophobicity as the driving force.  These similarities allow for 

the application of many of the techniques of molecular modeling and simulation developed for 

proteins to these systems.  At present, experimental imaging of star diblock copolymers and 

nanogel star copolymers, particularly in complex with drug molecules, has been limited, 

providing computational studies with the opportunity to predict the structures of these molecules 

in atomic detail, as well as their dynamic behavior.  In this work, we describe a comparative 

study of three star block copolymer systems with varying hydrophobicity in their core regions.   

The goal of this work is to provide atomic-level information on star polymer structure and 

dynamic behavior, including the size and shape of the polymer, the details of its bonding 

patterns, and its potential for aggregation.  Additionally, the kinetics of drug uptake and delivery, 

as well as the degradation profile of the delivery material, may also be examined.  Because 

theoretical methods, in contrast to experiment, are often less expensive and more time-efficient, 

their systematic application may offer strategies at the molecular level by which to modify 

formulations of drug and polymer for optimal compatibility and delivery efficiency. 

 

 

 

 

 



v 

 

Table of Contents 

List of Figures .............................................................................................................................. vii 

List of Tables ............................................................................................................................... xii 

Acknowledgements .................................................................................................................... xiv 
 

Chapter 1 Introduction..................................................................................................................1 

1.1 Challenges in the Study of Self-Assembling Biological Systems ..........................................1 

1.2 Protein Structure .....................................................................................................................3 

1.3 The Protein Folding Problem .................................................................................................6 

1.4 Experimental and Computational Approaches .......................................................................9 

1.5 Polymeric Nanoparticles with Drug Delivery Applications ................................................14 

1.6 Star Diblock Copolymers .....................................................................................................16 

Chapter 2 Methods ......................................................................................................................20 

2.1 Introduction to Molecular Dynamics and Stochastic Dynamics Simulations ......................20 

2.2 Modeling Biomolecules: Peptide and Polymer Model Systems ..........................................21 

2.3 Modeling Interactions: The Molecular Dynamics Forcefield ..............................................22 

2.4 Modeling the Environment: Solvent Models .......................................................................25 

2.5 Modeling Motion: Deterministic and Stochastic Models.....................................................27 

2.5.1 Deterministic Dynamics: Newton’s Equations of Motion ............................................28 

2.5.2 Integration Algorithms ..................................................................................................30 

2.5.3 Other Ensembles ............................................................................................................33 

2.5.4 Stochastic Dynamics: The Langevin Equation ..............................................................35 

2.6 Enhancing Sampling ............................................................................................................37 

Chapter 3 Rigorous Evaluation of Thermodynamic Stability and Kinetic Rates of Peptide 

Folding Using Enhanced Sampling: Application to Self-Guided Langevin Dynamics .........40 

3.1 Introduction ..........................................................................................................................41 

3.1.1 Simulation Algorithm ....................................................................................................45 

3.2 Methods ................................................................................................................................47 

3.2.1 Model System: Trpzip2 .................................................................................................47 

3.2.2 Model System: Trp-cage ...............................................................................................47 

3.2.3 Model System: Helix K-19 ............................................................................................48 

3.2.4 Langevin Dynamics Simulation ....................................................................................49 

3.2.5 Replica Exchange Molecular Dynamics Simulation .....................................................50 

3.2.6 Self-Guided Langevin Dynamics Simulation ................................................................50 

3.2.7 Analysis .........................................................................................................................52 

3.3 Results and Discussion .........................................................................................................54 

3.3.1 Langevin Dynamics Simulations of Trpzip2 and Trp-cage ..........................................54 

3.3.2 Self-guided Langevin Dynamics Simulations of Trpzip2 and Trp-cage .......................61 



vi 

 

3.3.3 Discussion: Comparison of SGLD with Trpzip2 and Trp-cage ....................................77 

3.3.4 Alpha-helix K19: Lengevin Dynamics and Self-guided Langevin Dynamics   

Simulations .............................................................................................................................78 

   3.4 Conclusions ...........................................................................................................................82 

Chapter 4 Non-Boltzmann Reservoir Replica Exchange Molecular Dynamics with User-

defined Weights ............................................................................................................................86 

4.1 Introduction ..........................................................................................................................85 

4.2 Derivation of Equations .......................................................................................................90 

4.3 Model System: Alanine Dipeptide .......................................................................................99 

4.4 Methods and Results ..........................................................................................................100 

4.5 Summary and Conclusions .................................................................................................123 

Chapter 5 Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock 

Arms, a Comparative Study......................................................................................................125 

5.1 Introduction ........................................................................................................................127 

5.2 Methods ..............................................................................................................................132 

5.2.1 Molecular Systems ......................................................................................................132 

5.2.2 Force Field ...................................................................................................................135 

5.2.3 Simulations ..................................................................................................................139 

5.2.4 Analysis .......................................................................................................................142 

5.3 Results ................................................................................................................................146 

5.4 Discussion ..........................................................................................................................170 

5.4.1 Hydrophobic Cores ......................................................................................................171 

5.4.2 Hydrophilic (PEO) Region ..........................................................................................172 

5.4.3 Interior Water ..............................................................................................................174 

5.4.4 Caveats ........................................................................................................................175 

5.5 Conclusions ........................................................................................................................179 

6. Conclusions .............................................................................................................................181 

References ...................................................................................................................................184 

 

 

 

 

 

 

 



vii 

 

List of Figures 

Figure 1.1: Peptide bond between two glycine amino acid residues ..............................................4 

Figure 1.2: α-helix from trp-cage miniprotein (PDB 1L2Y) and β-strand from trpzip2 

miniprotein (PDB 1LE1).  Figure created using Visual Molecular Dynamics software .................5 

Figure 1.3: Structures of a) hemoglobin (PDB 1GZX) and b) green fluorescent protein (PDB 

1GFL). Figure created using Visual Molecular Dynamics software ...............................................6 

Figure 1.4: Schematic of nanoparticles currently in use and under development for drug 

delivery: a) liposome, b) polymeric micelle, c) dendrimer.  Blue areas represent hydrophilic 

regions, and blue spheres represent hydrophilic drugs.  Red spheres represent hydrophobic 

regions, and red spheres represent hydrophobic drugs ..................................................................14 

Figure 3.1: Time-dependent average fraction native of the 48 trajectories for 100 ns LD 

simulations of trpzip2 at temperatures ranging from 300-375 K ...................................................55 

Figure 3.2: Number of clusters identified versus time for 100 ns LD simulations of trpzip2 ......58 

Figure 3.3: Time-dependent average fraction native of the 48 trajectories for 100 ns LD 

simulations of trp-cage at temperatures ranging from 250-355 K .................................................60 

Figure 3.4: Number of clusters identified versus time for 100 ns LD simulations of trp-cage ....61 

Figure 3.5: Number of clusters vs. time for 100 ns SGLD simulations of trpzip2 .......................66 

Figure 3.6: Comparison of free energy surfaces obtained for SGLD simulations of trpzip2 with 

averaging time of 0.2 ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD 

simulations at (b) 327 K, (d) 465 K, and (f) 465 K.  Energies are in units of kcal/mol ................68 

Figure 3.7: Comparison of free energy surfaces obtained for SGLD simulations of trpzip2 with 

averaging time of 2.0 ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD 

simulations at (b) 327 K, (d) 327 K, and (f) 327 K.  Energies are in units of kcal/mol ................70 

Figure 3.8: Number of clusters vs. time for 100 ns SGLD simulations of trp-cage .....................73 

Figure 3.9: Comparison of free energy surfaces obtained for SGLD simulations of trp-cage with 

averaging time of 0.2 ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD 

simulations at (b) 357.9 K, (d) 452.8 K, and (f) 452.8 K.  Energies are in units of kcal/mol .......75 

Figure 3:10: Comparison of free energy surfaces obtained for SGLD simulations of trp-cage 

with guiding factor of 1.0 and averaging times of (a) 1.0 ps, (c) 2.0 ps, and € 10.0 ps with REMD 

simulations at (b) 318.2 K, (d) 318.2 K, and (f) 300K.  Energies are in units of kcal/mol ...........76 

Figure 3.11: Helical content per residue of the peptide K19 obtained from LD simulations at 280 

K and 300 K and SGLD simulations at 300 K with an averaging time of 2.0 ps ..........................79 

Figure 3.12: Fractional helicity vs. time obtained from first 10 ns of 100 ns LD and SGLD 

simulations of helix K19 ................................................................................................................82 

Figure 4.1: Terminally blocked alanine peptide (Ace-Ala-Nme) .................................................99 



viii 

 

Figure 4.2: Free energy landscape of alanine dipeptide trajectory run for 1 μs at 400 K.  Energy 

units are in kcal/mol .....................................................................................................................101 

Figure 4.3: Potential energy landscape of alanine dipeptide obtained through construction of 

states in phi/psi space.  Energy is in units of kcal/mol ................................................................106 

Figure 4.4: Superimposition of population error for nearest-neighbor random walk onto potential 

energy landscape of alanine dipeptide obtained through construction of states in phi/psi space for 

(a) 300 K, (b) 375 K, (c) 450 K.  Errors are in hundredths of a percent ......................................108 

Figure 4.5: Superimposition of population error for nearest-neighbor random walk with random 

landscape exploration onto potential energy landscape of alanine dipeptide obtained through 

construction of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  Errors are in 

hundredths of a percent ................................................................................................................111 

Figure 4.6: Potential energy landscape of alanine dipeptide obtained through construction of 

states in phi/psi space showing division of landscape into areas of structural similarity.  Figure 

(a) considers the β and P
II
 basins to be continuous, whereas Figure (b) divides those structural 

basins into two discrete clusters.  For each such area, the average energy Ē and population of the 

cluster is given.  Energy is in units of kcal/mol ...........................................................................113 

Figure 4.7: Superimposition of population error for nearest-neighbor random walk with random 

landscape exploration using cluster weights onto potential energy landscape of alanine dipeptide 

obtained through construction of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  

Errors are in hundredths of a percent ...........................................................................................115 

Figure 4.8: Superimposition of population error for nearest-neighbor random walk with random 

landscape exploration using cluster weights onto potential energy landscape of alanine dipeptide 

obtained through construction of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  

Errors are in hundredths of a percent ...........................................................................................117 

Figure 4.9: Superimposition of population error for nearest-neighbor random walk with random 

landscape exploration using cluster weights onto potential energy landscape of alanine dipeptide 

obtained through construction of states in phi/psi space for (a) 2-case exchange criterion, (b) six-

case exchange criterion.  Errors are in hundredths of a percent.  T=300K ..................................120 

Figure 4.10: Superimposition of population error for nearest-neighbor random walk with 

random landscape exploration using cluster weights onto potential energy landscape of alanine 

dipeptide obtained through construction of states in phi/psi space.  Structures were clustered by 

the value of their potential energy with a cutoff of 1.5 kcal/mol.  Errors are in hundredths of a 

percent.  T=300K .........................................................................................................................122 

Figure 5.1: Schematic representations of star polymer construction for this study.  a) The 

adamantane junction showing the frame of 10 carbon atoms, four of which support the 

attachment of one arm and six of which support two arms.  b) A fully extended 16-arm star 

polymer with arms attached to the adamantane junction; hydrophobic portions of the diblock 

arms are in different colors, the hydrophilic portions are all colored light brown.  c) A 

representative “open” conformation produced after a small amount of simulation in the vacuum 



ix 

 

phase.  d) A solvated structure.  These figures are not drawn to the same scale; see the text for 

relative sizes .................................................................................................................................134 

Figure 5.2:  Renderings of representative configurations of the PLA star polymer at 300 K (left) 

and at 450 K (right).  The hydrophobic region of each of the 16 arms is shown in a different 

color.  The hydrophilic (PEO) terminal region of each arm is colored light brown ....................147 

Figure 5.3:  Renderings of representative configurations of the PVL star polymer at 300 K (left) 

and at 450 K (right), colored as in Figure 5.1.  The hydrophilic (PEO) terminal region of each 

arm is colored light brown ...........................................................................................................147 

Figure 5.4:  Renderings of representative configurations of the PE star polymer at 300 K (left) 

and at 450 K (right), colored as in Figure 5.2 ..............................................................................147 

Figure 5.5:  Radius of gyration, computed from the gyration tensor, for each star polymer at 

each of four temperatures.  Symbols represent PLA (diamonds), PVL (triangles), and PE 

(squares).  Solid symbols and solid lines represent the radius of gyration for the entire star 

polymer; open symbols and dashed lines represent that of just the hydrophobic material.  

Uncertainty estimates ± two standard deviations are not shown but are approximately the size of 

the symbols, usually 0.1 Å or less ...............................................................................................149 

Figure 5.6:  Root mean square deviation in Rg.  Symbol and line type notation is the same as in 

Figure 5.5 .....................................................................................................................................149 

Figure 5.7:  Anisotropy.  Uncertainty estimates are ±2 standard deviations ..............................150 

Figure 5.8:  Orientationally averaged mass density for the PLA star polymer at 350 K as a 

function of distance from the center of mass of the adamantane.  The curves represent 

contributions to the total mass density (cyan) from the adamantane (red), from the hydrophobic 

material (black), from the hydrophilic PEO (purple), and from water (blue)………………….. 152 

Figure 5.9:  Orientationally averaged mass density for the PVL star polymer at 350 K.  Coloring 

scheme is the same as for Figure 5.8 ...........................................................................................152 

Figure 5.10:  Orientationally averaged mass density for the PE star polymer at 350 K.  Coloring 

scheme is the same as for Figure 5.8.  In comparing this figure with Figures 5.8 and 5.9, one 

should note that the range of the x-axis is different .....................................................................153 

Figure 5.11:  Orientationally averaged mass density contribution from hydrophobic material in 

the PLA star polymer at 350 K resolved by contribution from different monomeric units.  Each 

color corresponds to the mass density contributed by a different set of 16 lactic acid monomer 

units that are all at the same position along the arm as measured from the adamantane 

connection.  The black curve represents mass density from the 16 lactic acid units that are 

directly connected to the adamantane ..........................................................................................155 

Figure 5.12:  Orientational autocorrelation functions for monomeric units at 350 K for PLA 

(top), PVL (middle), and PE (bottom) star polymers.  Each curve represents an average of the 16 

autocorrelation functions that correspond to monomeric units at the same distance along each 

arm.  Dot-dashed lines correspond to the transitional repeat units near the adamantane within the 



x 

 

hydrophobic material.  Solid lines correspond to various other hydrophobic monomeric units.  

Dashed lines correspond to hydrophilic PEO units.  Correlation functions decay more and more 

quickly as one moves farther out along each chain away from the adamantane.  For PLA (top) 

the lines refer to repeat units 2, 4*, 5*, 6, 8, 10, 12, 14, 16.  For PVL (middle) the lines refer to 

repeat units 1, 2*, 4, 6, 8.  For PE (bottom) the lines refer to repeat units 2, 3*, 4*, 6, 8, 10, 12.  

Asterisks indicate the repeat units to be transitional ....................................................................156 

Figure 5.13:  Total interfacial area of hydrophobic material (sum of hydrophobic-hydrophilic 

and hydrophobic-water interfacial areas) for the PLA (diamond), PVL (triangle), and PE (square) 

star polymers.  Uncertainty estimates are ±2 standard deviations ...............................................159 

Figure 5.14:  Interfacial area between hydrophobic material and water for the PLA (diamond), 

PVL (triangle), and PE (square) star polymers.  Uncertainty estimates are ± 2 standard deviations 

......................................................................................................................................................159 

Figure 5.15:  Total interfacial area of hydrophilic material (sum of hydrophobic-hydrophilic and 

hydrophilic-water interfacial areas) for the PLA (diamond), PVL (triangle) and PE (square) star 

polymers.  Uncertainty estimates are ±2 standard deviations ......................................................161 

Figure 5.16:  Interfacial area between hydrophilic (PEO) and hydrophobic material for the PLA 

(diamond), PVL (triangle), and PE (square) star polymers.  Uncertainty estimates are ±2 standard 

deviations .....................................................................................................................................162 

Figure 5.17:  Interfacial area between hydrophilic (PEO) material and water for the PLA 

(diamond), PVL (triangle), and PE (square) star polymers.  Uncertainty estimates are ±2 standard 

deviations .....................................................................................................................................162 

Figure 5.18:  Average number of interior water molecules and water molecule clusters per 

configuration in the PLA (diamond), PVL (triangle), and PE (square) star polymers.  The number 

of molecules is indicated with the solid lines and filled symbols; the number of clusters is 

indicated with dashed lines and open symbols.  Uncertainty estimates are ±1 standard deviation    

......................................................................................................................................................165 

Figure 5.19:  Depth profiles for water molecules penetrating into the interior of star polymers.  

Top panel is for PLA, middle for PVL, and bottom for PE star polymers.  In each case, the lines 

represent the probability density by depth for 300 K (black), 350 K (blue), 400 K (cyan), and 450 

K (red)………………………………………………………………………………………….. 167 

Figure 5.20:  Number of water penetration events observed per picosecond for PLA (diamond), 

PVL (triangle), and PE (square) star polymers.  Uncertainty estimates are ±1 standard deviations  

......................................................................................................................................................168 

Figure 5.21: Water penetration lifetime distributions.  The top panel is for PLA, middle for 

PVL, and bottom for PE star polymers.  In each case, the data represent the fraction of water 

penetration events lasting various amounts of time for 300 K (black), 350 K (blue), 400 K 

(cyan), and 450 K (red) ................................................................................................................169 

Figure 5.22:  Interior water cluster size histogram.  The top panel is for PLA, middle for PVL, 

and bottom for PE star polymers.  In each case, the data represent the fraction of interior water 



xi 

 

clusters that were water monomers, water dimers, or water trimers for 300 K (black), 350 K 

(blue), 400 K (cyan), and 450 K (red) .........................................................................................170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Tables 

Table 3.1:  Parameter sets used in self-guided Langevin dynamics simulations of trpzip2 and trp-

cage ................................................................................................................................................51 

Table 3.2:  Parameter sets used in self-guided Langevin dynamics simulations of K19 ..............52 

Table 3.3:  Thermodynamic and kinetic data from REMD and LD simulations of trpzip2.  

Column 2 lists the fraction of native structure obtained for each temperature trajectory at the end 

of the 100 ns reference REMD simulation.  For the 100 ns LD simulations, column 4 lists the 

average fraction of the 48 simulations that are in the native state during the 100 ns simulation 

time, with their associated error bounds.  Column 5 is the value of ΔG for each of the LD 

simulations versus the REMD simulation at 300K.  Columns 6 and 7 are the relaxation times of 

folding and unfolding obtained from a single-exponential fit of first passage times of folding and 

for escape from the native basin, respectively.  Column 8 lists the number of clusters found by 

each set of trajectories at the end of the 100 ns LD simulation. ....................................................56 

Table 3.4:  Thermodynamic and kinetic data from REMD and LD simulations of trp-cage.  

Column 2 lists the average fraction of native structure obtained for each temperature trajectory 

over the 100 ns reference REMD simulation.  For the 100 ns LD simulations, column 4 lists the 

average fraction of the 48 simulations that are in the native state during the 100 ns simulation 

time, with their associated error bounds.  Column 5 is the value of ΔG for each of the LD 

simulations versus the REMD simulation at 300K.  Columns 6 and 7 are the relaxation times of 

folding and unfolding obtained from a single-exponential fit of first passage times of folding and 

for escape from the native basin, respectively.  Column 8 lists the number of clusters found by 

each set of trajectories at the end of the 100 ns LD simulation .....................................................59 

Table 3.5:  Thermodynamic and kinetic data from 200 ns SGLD simulations of trpzip2.  Column 

4 lists the average fraction of native structure obtained for each SGLD parameter set, with their 

associated error bounds.  Column 5 is the value of ΔG for each of the SGLD parameter sets 

relative to the REMD reference trajectory at 300K.  Column 6 lists the relaxation time of folding 

obtained from the single-exponential fit of first passage times, and column 7 lists the relaxation 

time for escape from the native basin.  Column 8 is the value of the relaxation time of folding for 

each LD parameter set divided by that for the SGLD simulation at 300K (speedup), and column 

9 gives the number of clusters found by each parameter set at the end of the 200 ns simulation 

time. ................................................................................................................................................62 

Table 3.6:  Thermodynamic and kinetic data from 200 ns SGLD simulations of trp-cage.  

Column 4 lists the average fraction of native structure obtained for each SGLD parameter set, 

with their associated error bounds.  Column 5 is the value of ΔG for each of the SGLD parameter 

sets versus the REMD reference trajectory at 300 K.  Column 6 lists the relaxation time of 

folding obtained from the single-exponential fit of first passage times, and column 7 lists the 

relaxation time for escape from the native basin.  Column 8 is the value of the relaxation time of 

folding for each LD parameter set divided by that for the SGLD simulation at 300 K (speedup), 

and column 9 gives the number of clusters found by each parameter set at the end of the 200 ns 

simulation time. ..............................................................................................................................72 



xiii 

 

Table 3.7:  Thermodynamic and kinetic data from 100 ns LD and SGLD simulations of K19.  

Column 4 lists the values of the average helicity across residues 4-16 of the peptide, with their 

associated error bounds.  Column 5 is the value of ΔG for all simulations versus the LD 

reference trajectory at 300 K. Column 6 lists the relative percent decrease in helicity for each 

parameter set versus the LD simulation at 300 K. Column 7 lists the folding time of the peptide, 

estimated from the fractional helicity vs. time. ..............................................................................80 

Table 4.1:  Structural content of the 1μs MD trajectory at 400K, all frames and the ensemble of 

structures extracted from that trajectory  .....................................................................................101 

Table 4.2:  Populations and structural content of each of the 13 clusters obtained from clustering 

the 5,000 structures extracted from the 1 μs alanine dipeptide trajectory at 400 K using a 0.5 Å 

cutoff on the heavy atoms ............................................................................................................102 

Table 4.3:  Populations of structural families from control R-REMD simulation using reservoir 

of 5,000 Boltzmann-weighted structures  ....................................................................................103 

Table 4.4:  Construction of non-Boltzmann-weighted (NBW) reservoirs from the original 

Boltzmann-weighted (BW) reservoir of 5,000 frames  ...............................................................104 

Table 4.5:  Average structural content over replica trajectory structures at 275 K, 300 K, 325 K, 

and 350 K for user-defined non-Boltzmann R-REMD runs using non-Boltzmann-weighted 

reservoirs with increased populations of specific types of structures ..........................................104 

Table 5.1:  Summary of star polymer systems studied.  Core volume is used to derive scaling 

factors that allow comparison among systems (see text).   ..........................................................135 

Table 5.2:  Parameters for the torsional energy expressions involving backbone atoms in DME.  

Values, in units of kcal/mol, are used in the expression E()=(V1/2)(1+cos())+(V2/2)(1-

cos(2))+(V3/2)(1+cos(3))+(V4/2)(1-cos(4)).  DMEFF refers to the work of Anderson and 

Wilson
 
(28); IBM refers to the current work ...............................................................................138 

Table 5.3:  Populations of conformers of DME in bulk liquid given by different force fields and 

by experiment.  OPLS-AA and DMEFF data is from Anderson and Wilson; the column labeled 

SJY is from Smith, Jaffe, and Yoon; Raman data are from Goutev et al.  ..................................138 

 

 

 

 

 

 

 

 

 



xiv 

 

Acknowledgements 

 

 

This work would not have been possible without the continuous support of so many 

people.  I thank my advisor, Professor Carlos Simmerling, for giving me the freedom to explore 

ideas, and to make the mistakes which allowed me to truly test the limits of my knowledge and 

grow as a scientist.  His boundless enthusiasm for our work kept me going through setbacks, and 

set an example of the perseverance necessary to see a project through to fruition.  My 

dissertation committee was of great assistance to me over the years in providing feedback on my 

work, and I sincerely thank them for their time.  Professor Daniel Raleigh provided many helpful 

suggestions and asked difficult questions along the way which helped me to improve my work 

and presentations.  Professor Fernando Raineri has been an inspirational teacher and mentor for 

the past ten years; his Physical Chemistry course set me on the path to obtaining this degree, and 

through emulating his example of kindness and generosity, I learned to teach and mentor others 

in turn.  Dr. Hans Horn provided me with very helpful feedback on the dissertation, and his 

friendship and sense of humor were a great support to me in the weeks leading up to my defense. 

Working with the Computational Chemistry group at the IBM Almaden Research Center 

was the opportunity of a lifetime.  It was truly an honor to be advised at IBM by Dr. Bill Swope, 

and I cannot thank him enough for his infinite patience, humor, kindness, and enthusiasm in all 

things, especially in sharing his excellent wine.  I thank Dr. Julia Rice for being an incredible 

role model for women in science, and Dr. Jed Pitera for his many helpful suggestions on the 

polymer project.  Dr. Gavin Jones and Amanda Parker showed me the ropes when I arrived at 

IBM, and made every day (and every ride on the Light Rail) a lot of fun.   

The members of the Simmerling lab, past and present, have been my second family over 

the years.  I thank Dr. Asim Okur and Dr. Daniel Roe for initiating very interesting projects 

before leaving the lab, aspects of which haunt my nightmares to this day.  I still appreciate the 

friendliness shown to me by Dr. Salma Rafi, Melinda Layten, and Dr. Kun Song when I first 

entered the lab.  Dr. Christina Bergonzo, Dr. Lin Fu, Kevin Hauser, Agnes Huang, Koushik 

Kasavajhala, Colleen Kirkup, Haoquan Li, Eric Cheng-Tsung Lai, James Maier, Carmenza 

Martinez, Hai Nguyen, Dr. Sally Pias, and Dr. Miranda Yi Shang have all helped me to solve 

problems in both work and life.  It was a pleasure working with all of you, and it is an honor to 

have you as my friends.  I especially thank Dr. AJ Campbell, Dr. Fangyu Ding, and Dr. Lauren 

Wickstrom for the encouragement and support that they have shown me through the years.  

Thank you for being the most wonderful friends!  

It is difficult to leave Stony Brook at a moment when the members of our field have 

come together to form such a vibrant community.  The current members of the Laufer Center for 

Physical and Quantitative Biology, as well as the members of the previous Joint Computational 

Biology Group, have all played an important role in the development of my work and exposure 



xv 

 

to new ideas in the field.  I thank the members of the Dill Group for their friendship and support 

over the past year; it has truly been a pleasure getting to know each of you.  I thank Professor Jin 

Wang for introducing me to protein folding, and I thank his past group members Dr. Saul 

Lapidus, Dr. David Lepzelter, and Dr. Qiang Lu for their friendship and scientific input.  

Professor Rob Rizzo and Professor David Green have both been very helpful and supportive over 

the years, and I thank the members of their groups for their friendship.  

 I have been incredibly fortunate to have had many amazing teachers and mentors over the 

years at Stony Brook.  In the Department of Chemistry, Professor George Stell advised me in my 

first research experience, which led to my M.S. degree and set me on a lifelong path of worrying 

about phase transitions and critical phenomena.  Professor Bob Schnieder served on the 

committee for my M.S., and has been very supportive throughout my doctoral work.  I thank 

Professor Clare Grey for her outstanding teaching and mentorship, and Dr. Mohammad Akhtar 

for giving me my first opportunity to work as a Teaching Assistant.  In the Department of 

Physics, Professor Emilio Mendez first taught me how to think like a scientist, and his excellent 

teaching and kind nature remain an inspiration a decade later.  At the Center for Science and 

Mathematics Education, I thank Professor Linda Padwa and Professor Keith Sheppard for their 

mentorship and for providing me with many opportunities to improve my teaching.  I am greatly 

indebted to the Department of Chemistry for providing me with the opportunity to pursue a 

doctorate, and particular thanks are due to Katherine Hughes, Heidi Ciolfi, and Norma Reyes for 

handling my many registration emergencies.  At the Laufer Center, I thank Eileen Dowd and 

Nancy Rohring for their help and support. 

I thank my many friends who, although now scattered across the globe, are never further 

away than an email or phone call.  I thank my family for always encouraging me to continue my 

education and for giving me the freedom to pursue my dreams.  I thank Nathan for giving 

meaning to it all. 



1 

 

 “Could the search for ultimate truth really have revealed so hideous and visceral-looking an 

object?” 

-- Perutz MF (1964) The Hemoglobin Molecule. Scientific American 211(5):64-76. 

1. Introduction 

1.1 Challenges in the Study of Self-Assembling Biological Systems 

 A defining characteristic of many complex systems is that of emergence: the existence of 

collective principles of organization such that the system appears to develop novel behavior that 

is not necessarily predictable from the laws governing its microscopic constituents [1,2,3,4].  

Emergent phenomena are prevalent in biology, from the self-assembly of proteins from amino 

acid precursors to the co-evolution of neighboring ecosystems.  In many cases, the constituents 

of these systems and their behavior on the microscopic level have been firmly established, but 

exactly how these constituents cooperate to yield emergent phenomena is not known.  Much 

work thus remains to be done in establishing not only the fundamental structures which 

constitute these systems, but also the organizational principles which guide their behavior.   

 One of the major breakthroughs of science in the twentieth century was the elucidation of 

the structure and function of the molecules that carry out the processes of life, including DNA, 

RNA, and proteins [5,6,7,8,9,10].  Proteins are major players in a diverse array of biological 

processes, and as such, are of great diversity of function: they catalyze reactions, maintain the 

structural integrity of cells, permit cell motility, and function as signals and receptors.  One 

defining feature of proteins is their interrelation of structure and function.  The correct folding of 

a protein into a single, specific three-dimensional conformation is vital to its proper function, and 

misfolded and aggregated proteins are believed to be major factors in the development of 

disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases [11,12,13].  Much current 
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research in the field of structural biology thus aims to formulate hypotheses concerning the 

folding of proteins, from the relationship of the amino acid sequence to its resultant structure, to 

the robustness of specific sequences and conformations to perturbations such as genetic 

mutation.  

 Much of the development of protein folding theory and methodology has been based 

upon work that was performed earlier in the 20th century on non-biological polymeric systems 

[14,15,16,17].  Proteins are nanoscale polymeric structures that are formed through the 

spontaneous and concerted self-assembly of a set of 20 amino acid monomeric units, or residues.  

Although this set of amino acids and their resultant chemical interactions are, broadly speaking, 

more complex than those of typical non-biological polymeric systems, there remains enough 

similarity between the two systems that the insights and tools that are gained from work in one 

field may be applied to the other.  As will be described below, many of the problems, goals, 

advantages, and limitations of computational studies of both protein and polymeric systems are 

shared.     

 For example, structure and activity in biological and self-assembling polymeric systems 

span a wide range of lengths and times, ranging from the nanoscale to the macroscale [18].  

How, then, do we begin to examine these processes in proteins and polymers, and to unravel the 

relationship between their microscale physical laws, mesoscale structure, and macroscale 

dynamics and activity in order to uncover the layers of complexity of the system and their 

interrelation?  How do experimentalists treat both the atomic-scale and ensemble behavior of 

these structures, and how do theorists create models that accurately address the levels of 

complexity that these systems entail?   
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 The goal of this work is to outline two new methods in the computational study of protein 

folding which aim to provide solutions to a current problem in the field, that of efficiently 

observing the accessible conformations of a protein during the timescale of a simulation.  

Additionally, an application of simulation methodology to a non-biological self-assembling 

polymeric system on the nanoscale is demonstrated, and its potential application to the field of 

targeted drug delivery is discussed.  

1.2 Protein Structure 

 In a living cell, proteins play the role of messengers, sentinels, motors, and catalysts.  The 

ability of proteins to execute such a diverse range of tasks is due to the high specificity that they 

possess for the molecules with which they interact.  This specificity is based in large part on the 

three-dimensional structure of the protein, which dictates its function as well as its chemical 

propensity to interact with other biomolecules.  Understanding protein structure is therefore 

essential to discerning its biological function.  As elucidated by Fischer in the early 1900s, 

proteins are polymers of 20 amino acid subunits, or residues [19].  The number of residues in a 

protein chain ranges from tens to thousands; the particular sequence of amino acids that 

constitutes each protein chain is encoded by the genome, and is unique for each protein, as 

discovered by Sanger in the early 1950s [20,21].   

 Proteins are described as having four levels of structure: primary, secondary, tertiary, and 

quaternary.  The linear sequence of amino acids is known as the protein primary structure.  

Amino acids have a backbone, which consists of a central α-carbon linking an amide group and a 

carbonyl group.  Connected to each α-carbon is the chemical moiety known as the sidechain, 

which gives each amino acid its unique chemical identity.  Amino acids are connected by a 

peptide bond, which covalently links the amino group to the carbonyl group (Figure 1.1).  
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Although the peptide bond is rigid, rotations around the α-carbon allow for conformational 

flexibility.   

 

Figure 1.1: Peptide bond between two glycine amino acid residues. 

 

In order to understand how the conformational flexibility conferred by the protein 

primary structure gives rise to specific structures, it is important to have an understanding of the 

interactions that stabilize proteins.  Protein stability depends upon a balance of both short-range 

and long-range interactions.  Within the protein, covalent bonds maintain the integrity of the 

polypeptide chain, while hydrogen bonding between electronegative atoms, van der Waals 

interactions between dipoles, and electrostatic interactions between charged atoms affect the 

protein’s three-dimensional shape.  Hydrophobic interactions between residues of the 

polypeptide chain and the surrounding aqueous solvent provide the driving force of protein 

folding [22].   

 Protein secondary structure consists of distinct motifs formed by regular arrangement of 

the protein backbone with varying sidechains [5,10].  Helices, which can be right-handed or left-

handed, are stabilized by hydrogen bonds formed between the carbonyl and amide groups of the 

polypeptide backbone.  Extended, slightly twisted β-strands coalesce into β-sheets by means of 

hydrogen bonding between chains (Figure 1.2).  Polyproline helices lack hydrogen bonds, and 

are instead stabilized solely by van der Waals interactions.   
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Figure 1.2: α-helix from trp-cage miniprotein (PDB 1L2Y) and β-strand from trpzip2 miniprotein (PDB 1LE1).  

Figure created using Visual Molecular Dynamics software. 

 

Tertiary protein structure is the three-dimensional structure of the entire protein, 

including the coalescence of the individual structural domains described by the secondary 

structure.  The structural propensities of each of the 20 amino acid residues are determined by 

the chemical characteristics of their sidechains, and structures are stabilized by hydrophobic or 

ionic interactions between them.  Polar, hydrophilic amino acids prefer surface regions where 

they can easily participate in hydrogen bonds with the polypeptide chain as well as with water.  

Nonpolar, hydrophobic residues prefer β-structure, as their bulky sidechains are more easily 

accommodated in this arrangement, and the chemical nature of these sidechains results in their 

location in the protein interior.  The burial of hydrophobic side chains is a major driving force for 

protein folding, as discussed in Section 1.3.  Figure 1.3a shows top and bottom views of the 

hemoglobin molecule, which comprises α-helices connected by disordered loops.  Each 

hemoglobin molecule is a tetramer constructed of four hemoglobin protein subunits, here shown 

in red, orange, blue, and cyan.  Hemoglobin possesses quaternary structure due to its oligomeric 

construction.  The interactions stabilizing protein quaternary structure are the same as those 
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which stabilize tertiary structure.  Figure 1.3b shows front (red) and back (blue) views of the 

green fluorescent protein, which contains β-sheets that have coalesced into a β-barrel structure.  . 

 

Figure 1.3: Structures of a) hemoglobin (PDB 1GZX) and b) green fluorescent protein (PDB 1GFL). Figure created 

using Visual Molecular Dynamics software. 

1.3 The Protein Folding Problem 

 Having discussed the interactions that stabilize protein structure and drive protein 

folding, the question arises as to the process that a linear amino acid chain undergoes so that its 

requisite interactions produce the correct three-dimensional structure.  For many large proteins, 

correct folding requires the assistance of molecular chaperones, different classes of which 

function to guide folding, prevent protein aggregation and misfolding, and to translocate proteins 

across membranes [23].  Relatively small globular proteins, however, are able to spontaneously 

fold in vivo without the assistance of chaperones.  In 1961, Anfinsen noted that the small 

globular protein bovine ribonuclease was able to spontaneously re-fold into its functional 

structure after having been gently denatured [24].  This finding, known as Anfinsen’s dogma, 

confirmed that all of the information necessary for a protein to fold is contained in the protein’s 

primary amino acid sequence, and implies that under the conditions in vivo at which folding 

occurs, the native state is a unique, stable, and kinetically accessible minimum of the free energy. 
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  How is this free energy minimum located?  Experimentally, the folded state of globular 

proteins is known to be only marginally stable, as the difference in free energy between the 

folded and unfolded states often ranges from 5-15 kcal/mol.  This marginal stability suggests that 

the system is near the critical point of a first-order phase transition, and that the folding process 

is a competition between entropy and enthalpy, according to the following relation 

STHG                (1.1) 

where G is the Gibbs free energy, H is the enthalpy, and S is the entropy.  The hydrophobic 

effect is believed to be the main driving force in protein folding in aqueous solvent, and unlike 

the electrostatic interactions that drive the formation of some elements of tertiary structure, it is 

entropic in origin.  Water is a structured liquid, as it is able to form hydrogen bonds with itself to 

form an ordered structure.  The introduction of a hydrophobic solute, such as a protein, into 

water disrupts the hydrogen bonding network of the bulk water, and leads to the reorientation of 

a solvation shell around the protein which has restricted mobility and reduced entropy.  The 

burial of the hydrophobic amino acids of the protein into the protein interior and away from the 

water reduces this entropic loss and provides the driving force for protein folding.  The protein 

itself loses conformational entropy as it folds from an extended chain to a more compact 

structure, but also undergoes favorable enthalpic gains through interactions such as hydrogen 

bonds and salt bridges to find the native state. 

 In order for the thermodynamically favorable native state to be reached, it must also be 

kinetically accessible on a reasonable timescale.  In 1969, Levinthal recognized that the search 

for the native structure potentially involved an exponentially large number of configurations 

[25].  For example, a polypeptide chain with 100 amino acids, each of which has two possible 

stable conformations, has 2
100

 possible conformations available to it.  Assuming that a transition 
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between conformational states occurs on the fastest possible timescale of one picosecond, 

corresponding to the period of a single bond rotation, a single folding event would require 

approximately 2
100

 picoseconds, or 10
10

 years, to sample all available conformations on the way 

to the fold of greatest thermodynamic stability.  Levinthal’s paradox recognizes that the 

attainment of a single native state is evidence of its stability, but as the estimate of folding time 

given above demonstrates, the protein does not have enough time to prove that the native 

structure is in fact the most stable among all those that are possibly available to it.  As most 

proteins are able to fold on a timescale of microseconds to seconds, the amino acid chain clearly 

does not systematically attempt all possible conformations until it finds the one that is most 

energetically favorable.   

 The resolution of Levinthal’s paradox lies in part in the application of aspects of energy 

landscape theory to the problem.  Levinthal’s statement regarded all protein interactions to be 

equally probable, corresponding to a random search.  Levinthal himself postulated the existence 

of a specific, well-defined folding pathway for each protein, the end of which is the protein’s 

native fold.  This pathway is narrow in conformation space, such that extensive sampling is 

avoided, and the protein is driven to its free energy minimum.  This suggestion leads to the 

conclusion that the native state might not correspond to the global free energy minimum of the 

protein, but rather, to a locally accessible metastable minimum.  The existence of an energy bias 

toward the native state reduces the folding time scale to a realistic value.   

 Within this context, Wolynes suggested that, through the process of evolution, 

biologically functional proteins exhibit minimal frustration [26].  This frustration can be either 

energetic, which is dependent upon constraints of its sequence, or topological, which is 

dependent upon its structural topology.  Onuchic proposed that, rather than following a single 
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folding pathway, the native state might be the endpoint of an ensemble of convergent kinetic 

pathways [27].  The free energy landscape of a protein is thereby pictured as being biased toward 

the native state with few local minima to act as kinetic traps.  This view of the protein folding 

problem necessitates the study of ensembles of molecules in order to obtain a complete picture of 

the energy landscape, as statistical theories allow for the determination of the probability 

distribution for sampling the energy surface.  

 Having established that the protein folding problem involves both thermodynamic and 

kinetic control, single molecules as well as statistically significant ensembles of these molecules, 

how do we develop a theoretical framework and experimental techniques to treat a system of 

such daunting complexity? 

1.4 Experimental and Computational Approaches 

Theoretical and experimental methods used to examine protein structure and the process 

of protein folding focus on capturing both static and dynamic pictures of molecular structure.  

These techniques thereby aim to extract snapshots of instantaneous structures, the kinetic rates at 

which events occur, and average thermodynamic properties over a statistical ensemble of protein 

structures.  Single-molecule experiments have the potential to yield information about individual 

molecular trajectories, whereas ensemble experiments provide averaged quantities over the entire 

ensemble.  The insight gained from these methods allows hypotheses to be formulated 

concerning the structure of proteins and their relation to function, with the ultimate goal of 

contributing to the understanding of disease, its prevention, and its cure.  As in any field, the 

synergy between theory and experiment serves to provide a broader perspective than would be 

possible using just one approach.  Although experiment and theory each have certain 

shortcomings, the advantages of one can in some cases be used to overcome the limitations of 
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the other.  When used together in a complementary fashion, theory and experiment can provide a 

more complete picture of the structure and dynamics of a protein. 

 In order to obtain static pictures of protein molecules, X-ray crystallography is often 

used.  X-ray crystallography of biological molecules was pioneered by Kendrew and Perutz, with 

their elucidation of the structures of hemoglobin and myoglobin [28,29].  Using this method, X-

rays are passed through a crystalline protein sample and produce a two-dimensional diffraction 

pattern that is then converted to a three-dimensional model using Fourier transforms.  Although 

this technique is currently able to produce high-resolution (~1Å) atomic structures, the difficulty 

of obtaining a protein crystal, as well as the possible presence of crystallization artifacts in the 

sample, have the potential to skew the results.  Additionally, the resulting picture is 

predominantly static, and does not suggest the dynamic movement of the molecule. Attempts to 

relate the distribution of electron density to conformational fluctuations using B-factors are not 

always straightforward, as they may be indicative of errors in structure refinement. 

 In NMR spectroscopy of proteins, pioneered by Wüthrich [30], aqueous samples of a 

protein are subjected to a large magnetic field, and the interaction of each atom’s nuclear spin 

with the field allows for calculation of the relative locations of each atom.  Refinement of NMR 

structures in principle produces an ensemble of structures in solution, but difficulty remains in 

obtaining a large number of experimental observations for each residue.   

Other spectroscopic tools that can be used to probe the conformations of proteins include 

circular dichroism (CD), tryptophan fluorescence, fluorescence resonance energy transfer, pulsed 

electron paramagnetic resonance, and temperature-jump spectroscopy.  Ongoing development of 

these techniques may improve their applicability to proteins in the future, but there remain 

fundamental limitations of these methods, such as the ability to probe only spectroscopically 
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observable properties [31].  Due to these limitations, the need remains to develop techniques that 

will allow for the atomic-level observation of single molecules as well as ensembles, and time 

resolution as well as ensemble averages. 

 The possibility of performing “computer experiments” in the form of numerical 

simulations on physical and chemical systems was realized in the early 1950s, ushering in a new 

methodology for validating theories in physics and chemistry.  During the Second World War, 

electronic computers were built and developed to perform calculations involved in the 

development of nuclear weapons, ballistics calculations, and code breaking.   These computers 

became available for unclassified research in the early 1950’s, and one of the first areas of 

research to which these computers were applied was the simulation of dense liquids.  Although 

many theories at the time treated the properties of dense liquids, few experiments other than 

painstaking mechanical simulation [32] were available to test the validity of these theories.   

The first simulation of a liquid was carried out by Metropolis, Rosenbluth, Rosenbluth, 

Teller, and Teller [33] on the MANIAC computer at Los Alamos, using the Metropolis Monte 

Carlo method.  Developed by Metropolis and Ulam [34] in the context of neutron scattering 

calculations, the Monte Carlo method uses probabilistic sampling to provide solution to 

intractable deterministic problems.  The first simulations using the molecular dynamics 

algorithm, in which an equation of motion is integrated and a model for the interatomic forces, or 

forcefield, is used to describe the interatomic interactions, were performed in 1957 by Alder and 

Wainwright [35] at Livermore.  Their research produced a time-dependent trajectory of motion 

of a collection of hard spheres.  In 1964, Rahman reported the first MD simulation of a real 

liquid (argon) [36], and the first simulation of liquid water was undertaken in 1974 by Stillinger 

and Rahman [37].  
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The development of empirical potential energy functions for biological molecules was 

undertaken in the 1970s by a few different groups [38,39,40,41].  In 1975, Levitt and Warshel 

published a quantum mechanical/molecular mechanics (QM/MM) study of bovine pancreatic 

trypsin inhibitor using a coarse-grained model with stochastic dynamics and used the results to 

present a general model for protein folding [42].  MD simulation of the same protein was 

undertaken in 1977 by McCammon, Gelin, and Karplus, and the results outlined the importance 

of fluctuations to the dynamic nature of the protein [43].  Since these seminal works were 

published, the field of computational structural biology has produced a significant body of work 

that has led to great insights in problems concerning the relationship between biological structure 

and function.  The vast expansion of computer resources that has been made available for this 

problem has allowed simulation to grow from a methodology used in support of theoretical and 

experimental approaches to a discipline in its own right.   

 Protein folding, in particular, has been viewed as one of science's current “grand 

challenge” problems, and recent years have seen the development of world-class supercomputers 

designed specifically for tackling this problem [44,45].  Currently, work in the field of 

computational protein folding focuses on three major areas: the de novo prediction of native 

protein structure from its amino acid sequence, the thermodynamic problem of how the 

interatomic forces encoded in an amino acid sequence give rise to a stable native structure, and 

the kinetic question of how the complex system of a protein is able to locate its native 

conformation so quickly [46,47,48,49]. 

Despite the successes of biomolecular simulation within the context of these goals, there 

remain limitations in the ability of this methodology to accurately model protein structure and 

dynamics, and to solve problems efficiently in terms of the time required by the work and the 
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computational resources required.  First, the forcefields that are used to model the 

macromolecular system are only approximations to the real physics, and are often chosen for 

computational tractability rather than accuracy.  Inaccuracies in the forcefields and solvent 

models result in pathological problems in the simulation structures, and although these 

inaccuracies are usually discovered and corrected, they still point to fundamental deficiencies in 

the models.  Secondly, the sizes of the biomolecular systems under study are limited due to 

losses in computational efficiency that arise when certain size limits are reached.  This size 

limitation precludes the study of large systems of biological interest, and often prohibits the 

simulation of systems in an aqueous solvent that is modeled in atomic detail.   

Finally, as discussed above, proteins exist on a rugged free energy landscape, which 

limits the extent of conformational space that can be visited in a single simulation.  The 

development of enhanced sampling techniques, which is the focus of Chapters 2 and 3 of this 

dissertation, aims to bypass this limitation by manipulating the formulation of the system's 

energy function and the equations of motion.  Improvement of the sampling problem should 

serve to increase the size of the systems that are able to be studied in a computationally efficient 

way. 

Applications of molecular dynamics techniques outside of the field of protein structure 

determination include studies of the thermodynamic and kinetic properties of novel materials.  

One of the most important goals of simulation studies of biological, as well as non-living 

material is to be able to understand the mechanisms driving their function.  Applying this 

knowledge in a clinical setting may result in the ability to treat and prevent disease.  Chapter 4 of 

this dissertation discusses all-atom molecular dynamics simulations of diblock star copolymers, 

which are self-assembling nanoscale systems that have shown great potential in the field of 
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targeted drug delivery in the human body.  Intriguingly, these star polymer systems bear many 

important similarities in structure and composition to proteins, being composed of linear 

polymeric chains of repeating units which self-assemble with hydrophobicity as the driving force 

[17].  These similarities allow for the application of many of the techniques of molecular 

modeling and simulation developed for proteins to these systems.   

1.5 Polymeric Nanoparticles with Drug Delivery Applications 

Current estimates place the percentage of small drug and drug-like molecules that are 

hydrophobic at 40% [50].  Due to the poor aqueous solubility of these molecules, recent efforts 

in drug formulation and delivery have focused on increasing their solubilization.  Several lipid-

based materials have emerged as effective solubilizing agents, as they are able to dissolve highly 

hydrophobic drugs in their lipid bilayer, as well as hydrophilic therapeutics in their interior 

(Figure 1.4a) [51].  Additionally, these liposomal formulations are often able to release the drug 

to a specific target, which minimizes the number and severity of patient side-effects and allows 

for more efficient administration of the drug [52].  

 

 

Figure 1.4: Schematic of nanoparticles currently in use and under development for drug delivery: a) liposome, b) 

polymeric micelle, c) dendrimer.  Blue areas represent hydrophilic regions, and blue spheres represent hydrophilic 

drugs.  Red spheres represent hydrophobic regions, and red spheres represent hydrophobic drugs.   
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As a result of these advantages, the FDA has approved several liposome-based 

formulations for the treatment of various disorders, including Myocet
®
 for metastatic breast 

cancer, Abelcet
® 

for fungal infections, and DaunoXome
®

 for HIV-related Kaposi sarcoma [53].  

A number of additional nanomedicines are currently undergoing clinical trials or are in 

preclinical development [53,54].  Despite the initial success of liposomal drug carriers, liposomal 

formulations are limited in their ability to solubilize highly hydrophobic drug molecules, and 

these molecules are often rapidly released from the lipid bilayer following their entry into the 

bloodstream.  Once released into the bloodstream, liposomes are often rapidly recognized 

through opsonization, which is a mechanism by which foreign materials in the bloodstream are 

flagged for recognition and removal by macrophages.  The rapid exit from the bloodstream by 

liposomal drug carriers often leads to an unfavorable therapeutic index [53,54].  

The desire to create a vehicle for drug delivery with the solubility of a liposomal 

formulation, but with greater control of drug release, has led to the investigation of compounds 

that exhibit increased stability in aqueous solvent while retaining the ability to solubilize highly 

hydrophobic materials.  Block copolymers have emerged as a material with a great deal of 

potential for accomplishing these goals [54,55,56].  Block copolymers consist of segments of 

chemically distinct mononers that are covalently bonded to one another.  Diblock copolymers 

consist of two different subunits, such as polycaprolactone and polyethylene glycol, which are 

covalently linked.  When placed into a solvent that is selective for one of the blocks, diblock 

copolymers undergo microphase separation and self-assemble into micellar structures (see Figure 

1.4b).  In these micelles, the insoluble block forms the core, while the soluble block comprises 

the outer shell, or corona.  The size and topology of the resultant structure depends on the 

relative sizes of the two blocks, their chemical identities, and their interactions with the solvent.  
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Spherical or cylindrical micelles are commonly produced; however, recent synthetic advances 

have led to an increase in topological complexity in the form of liposomes, brush copolymers, 

dendrimers, and star block copolymers (Figure 1.4c) [56,57]. 

1.6 Star Diblock Copolymers 

 Star block copolymers retain a micellar architecture, but one end of each amphiphilic arm 

is tethered to a central group, thereby forming a unimolecular micelle.  As the individual 

amphiphilic blocks are covalently fixed, the polymer exhibits an enhanced stability when 

compared to untethered micelles, which exist in equilibrium between bound and unbound 

monomers.  The stable micellar architecture of the star copolymer makes it a singularly effective 

platform for drug delivery.  Use of an amphiphilic diblock in a polar solvent such as the human 

bloodstream creates a nonpolar interior core with a hydrophilic exterior that remains solvated 

and protects the hydrophobic interior [56].  The micelle formed by an amphiphilic diblock star 

copolymer thereby has the potential to sequester a hydrophobic drug in its interior, increasing its 

apparent solubility and allowing the drug to be stably and effectively transported to its ultimate 

target [53].  The targeting of the drug cargo, which will be discussed below, also increases the 

specificity of the drug’s activity and is believed to decrease the occurrence of side effects in the 

patient [58].  Effective encapsulation and transport by the star copolymer system is dependent 

upon the solubility of the drug molecule in the hydrophobic core, as well as the stability of the 

core monomer self-association in aqueous solvent.  Due to the large number and chemical 

diversity of drug-like molecules that have the potential to be carried by star copolymer systems, a 

large number of combinations of drug molecules and hydrophobic polymer carriers have been 

experimentally tested in order to determine the most effective pairs [53].  We now turn to a 

discussion of the most common materials used for the hydrophobic interior.   
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 Polyethers such as poly(ethylene oxide)-poly(propylene oxide) (PEO-b-PPO) block 

copolymers have been extensively investigated for drug delivery, which has lead to FDA 

approval of several of their derivatives, including Pluronic® and Tetronic®, for use as drug 

carriers [59].  These materials, however, exhibit instability even when cross-linked, dissociating 

quickly after injection and causing an undesirable burst release of the encapsulated drug.  Due to 

the shortcomings of carriers based on PPO, other materials, such as polyamino acids and 

polycarbonates, have been examined as alternatives [56].  The most promising class of 

alternative materials that has been examined is the polyesters.  Poly(ε-caprolactone) (PCL) is 

more hydrophobic than PPO, and studies have indicated that this material exhibits a greater 

stability, particularly for neurotrophic agents [60].  Poly(lactide) micelles created from block 

copolymers of both pure stereoisomer forms L-lactide and D-lactide are mixed together exhibit 

improvements in stability, likely due to the formation of a stereocomplex between the pure 

stereoisomer chains [56].  The potential for polyvalerolactone (PVL) to be used as a drug 

excipient has also been shown experimentally [61].  Due to their potential for high stability when 

introduced in vivo, simulations of drug delivery vehicles based on these materials will be the 

focus of the work outlined below in Chapter 4.    

Of equal importance to the material chosen for the hydrophobic core, the polymer that 

comprises the surrounding hydrophilic corona must exhibit a high solubility in the solvent in 

order to maintain the core's stability and structural integrity.  The most widely used monomer for 

the corona is poly(ethylene glycol) (PEG), which is nonionic and completely miscible with water 

at room temperature.  Its high miscibility causes its surfaces to become saturated with water 

molecules, which not only contributes to solubility, but also prevents opsonization [56].  

Nanoparticles that are coated in PEG therefore remain concealed in the bloodstream for extended 
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periods of time without being recognized or removed.  Such particles are commonly known as 

“stealth” molecules.  PEG thereby acts to enhance the pharmacokinetics of many drugs that are 

currently on the market.  The addition of PEG to a liposomal or polymer formulation is known as 

“PEGylation.”  PEGylation has been used to improve the formulation of several liposomal drugs, 

including Pegasys
®
, which is a reformulation of interferon alpha used in treatment of chronic 

hepatitis C and hepatitis B that enhances the half-life of the drug [53].  

The properties of the coronal layer also largely control the transport and targeting of the 

polymeric vehicle, as the polymer chains comprising the corona extend into the bloodstream and 

interact with biological molecules, such as proteins and antibodies.  In active targeting, 

molecules that interact with cell surface receptors are attached to the end group of the 

hydrophilic chain of the block copolymer [56].  For example, the addition of folic acid to a 

hydrophilic block containing PEG targets tumor cells, which over-express folate receptors in 

many kinds of cancers.  The folic acid binds to the folate receptor, triggering a receptor-mediated 

endocytosis process that internalizes the folic acid-receptor complex as an endosome [58].  

Because many cells are able to eliminate drugs that reach the cytosol, some mechanisms of drug 

delivery need to target DNA as closely as possible to ensure that the drug reaches its target.  

Such control over drug delivery is obtained through the use of materials that are sensitive to pH 

or temperature, such as polyethyleneimine (PEI) or poly(N-isopropylacrylamide) (PNiPAAm) 

[60].  The systems simulated in Chapter 4 of this work use PEG in the coronal layer due to its 

properties of stealth and targetability, which have led to its documented success in drug 

formulations that are already on the market. 

 The reformulation of liposomal drugs with block copolymers has lead to improvements in 

drug pharmacokinetics and delivery.  The anti-cancer agent paclitaxel was originally solubilized 
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in a polyethoxylated castor oil known as CremophorEL (Taxol
®
).  Although highly effective 

against cancer, Taxol
®
 exhibited several dose-limiting toxicities in patients.  Taxol

® 
was 

reformulated with a PEG-b-PDLLA copolymer (Genexol-PM
®
), and clinical trials of this new 

formulation have reported a 6000-fold increase in solubility, along with the toleration of higher 

doses of the drug with fewer patient side effects.  Several therapeutic agents currently in 

preclinical development are composed of drugs that are successfully solubilized in liposomes, 

such as doxorubicin and daunorubicin, with polymeric micellar vehicles [50,53]. 

At present, experimental imaging of star diblock copolymers and nanogel star 

copolymers, particularly in complex with drug molecules, has been limited, providing 

computational studies with the opportunity to predict the structures of these molecules in atomic 

detail, as well as their dynamic behavior.  In Chapter 4 of this work, we describe a comparative 

study of three star block copolymer systems with varying hydrophobicity in their core regions.   

The goal of this work is to provide atomic-level information on star polymer structure and 

dynamic behavior, including the size and shape of the polymer, the details of its bonding 

patterns, and its potential for aggregation.  Additionally, the kinetics of drug uptake and delivery, 

as well as the degradation profile of the delivery material, may also be examined.  Because 

theoretical methods, in contrast to experiment, are often less expensive and more time-efficient, 

their systematic application may offer strategies at the molecular level by which to modify 

formulations of drug and polymer for optimal compatibility and delivery efficiency [62,63,64].   
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2. Methods 

2.1 Introduction to Molecular Dynamics and Stochastic Dynamics Simulations 

 As discussed in the introduction to this work, the three current goals of simulation studies 

of proteins are the correct prediction of their functional structure based on the identities of their 

constituent molecules, the description of the thermodynamic properties of ensembles of 

molecules, and the delineation of the kinetic pathways taken by proteins on their energy 

landscape as they reach their functional conformation.  The first two goals employ simulation in 

order to sample the configuration space that is available to a biomolecule under certain 

thermodynamic conditions.  In these cases, simulations are used to obtain a description of the 

system once equilibrium has been reached, requiring not only that conformation space is 

sampled, but with the additional requirement the each state be weighted by its corresponding 

Boltzmann factor.  In order to achieve this equilibrium sampling, non-deterministic stochastic 

simulations can be undertaken.  When an accurate description of the time evolution of the 

system, as well as its dynamic properties, is required, a molecular dynamics simulation is 

undertaken, in which Newtonian mechanics is used to propagate the system in time.   

 Thus, as a complement to experiment, simulations of biomolecules may be used to obtain 

both equilibrium and time-dependent properties of both single molecules and ensembles.  In 

molecular dynamics and stochastic simulations, the potential energy of the system is described in 

terms of a function of atomic positions known as a force field, and the value of the system 

Hamiltonian is numerically solved over a discrete time step.  The forces on all of the particles in 

the system are computed, and the appropriate equations of motions are integrated to obtain the 

motion of the system over the specified timestep.  According to the ergodic hypothesis, the time 

average of a thermodynamic property of a trajectory is equivalent to its ensemble average.  From 
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the time evolution of the system, simulations may thus reveal both the spatial and temporal 

extent of conformational sampling, as well as the instantaneous and ensemble averages of 

thermodynamic properties.   

It is the goal of this chapter to outline the steps taken in an MD or stochastic simulation, 

including the modeling of the biomolecule, its motion, and its environment.  The details of this 

discussion are particular to the forcefield that is used with the AMBER molecular dynamics 

software package [65], although most of the information is generalizable for other forcefields 

that are commonly used, such as GROMOS [66], CHARMM [67], OPLS [68], and LAMMPS 

[69].  Additionally, we briefly discuss the necessity of developing new algorithms that have the 

goal of overcoming limitations in computational efficiency and conformational sampling; the 

details of these methods are addressed in later chapters of this work.   

2.2 Modeling Biomolecules: Peptide and Polymer Model Systems 

 Factors that limit the feasibility of simulations of biological systems are the high level of 

detail and long timescale that are required to obtain accurate and biologically relevant results.  

One way to reduce the computational cost of a simulation is through simplification of the system 

under study, in terms of size and complexity.  The use of model systems allows us to quickly 

gain insight into the use of new force field parameters or novel simulation algorithms before they 

are applied to larger, biologically relevant systems.   

 Useful peptide model systems provide known, stable examples of certain types of 

secondary structure.  The work described in subsequent chapters focuses on the use of model 

peptides in the validation of new methods.  In Chapter 3, the β-hairpin tryptophan zipper 2 [70], 

the α-helix K19 [71], and the trp-cage miniprotein [72] are used to test the self-guided Langevin 

algorithm.  In Chapter 4, the alanine dipeptide model system, which is able upon solvation to 
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fully sample the range of φ and ψ dihedral angles that is available to protein α-helix and β-strand 

motifs, is used to validate a new method involving replica exchange molecular dynamics.   

 Additionally, in Chapter 5, we use a simplified model consisting of 16 diblock copolymer 

arms bound to a rigid adamantane core in order to undertake simulations of nanogel star diblock 

copolymers.  Although this model system is much smaller than any synthesized star polymer, we 

believe that it can serve as a useful model for the polymeric structure and solvent-nanoparticle 

interactions of more complex systems.  This discussion of model systems for biomolecules 

brings us to an important point when discussing simulation methodology: all of our models, 

whether they are of the biomolecule, its interactions, or its environment, possess certain 

limitations.  Exploring the shortcomings of these models allows them to be continually improved 

in accuracy and efficacy, and allows for a more complete description of the natural structures and 

phenomena that we aim to describe. 

2.3 Modeling Interactions: The Molecular Dynamics Forcefield 

Molecular dynamics (MD) simulations are grounded in the assumption that the motions 

of the atoms and molecules in a system can be modeled using classical mechanics.  In theory, a 

quantum mechanical treatment of the system would be most accurate; however, accurate 

solutions to Schrödinger’s equation are not feasible for any except the smallest systems.  Using 

the Born-Oppenheimer approximation [73], which states that the nuclei remain fixed on the 

timescale of the motion of the electrons, the potential energy of the system can be described 

classically as a function of the nuclear positions, defining the Hamiltonian of the system as 

follows 

)()(),( rUpKrpH


              (2.1) 
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where )( pK


 is the kinetic energy and )(rU


 is the potential energy.  This Hamiltonian considers 

the molecule to be a collection of nuclei connected by bonds that are modeled as springs, and the 

molecule stretches, bends, and rotates about these bonds as a response to intermolecular and 

intramolecular forces.  This potential function must be constructed empirically using the 

appropriate molecular data for each of its terms.  Numerical minimization of this function allows 

for determination of favorable regions in the configuration space of the molecule. 

 The molecular mechanics Hamiltonian is the sum of the potentials of the contributing 

physical forces.  In a protein, the forces are generally separated into bonded and nonbonded 

terms, which describe the local and long-range interactions within the molecule.  Local terms 

describe potentials for lengths describing bond stretching, as well as angles describing bond 

bending and rotation.  Nonlocal terms include a Lennard-Jones potential [74] to model repulsion 

at short interatomic separations and attraction at long distance, and a Coulombic potential [75] 

among the pairs of charged particles in the system.  One functional form for a forcefield 

describing these interactions that is commonly used for biological macromolecules is written as 

follows [76] 
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where )( NrU


 denotes the potential energy as a function of the N atomic positions.   

 The first and second terms in Equation 2.2 model bond stretching and angle bending after 

Hooke’s law as a harmonic potential of bond lengths r and bond angles θ with force constant k.  

The empirical values in these terms are obtained from vibrational spectroscopy, as well as from 
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solved X-ray crystal structures or quantum mechanical solutions to equilibrium structures of 

small molecules.  The third term describes the potential as a function of the internal rotation of 

the molecule, which is dependent upon conformational barriers to rotation.  The parameter Vn 

contributes to the barrier height, ω is the torsion angle, and γ is the phase factor.  Empirical data 

obtained from NMR, IR, Raman, and microwave spectroscopy can be used for barrier height and 

periodicity estimation in compounds of low molecular weight.  Torsional parameters in this term 

are obtained by using ab initio quantum-mechanical calculations combined with geometry 

optimizations.   

 The fourth term in Equation 2.2 is the Lennard-Jones 6-12 potential [74], which describes 

both the attractive long-distance dispersive interactions (or London forces) [77] and the short-

range repulsions due to the Pauli exclusion principle [78].  Although the Buckingham potential 

[79] would provide a better fit over a broader range of separation distances, the Lennard-Jones 

potential is chosen for mathematical convenience.  The Lennard-Jones potential includes two 

parameters: the molecular distance at which the energy is zero is described by the collision 

diameter σ, and the depth of the function’s energy minimum is described by ε.  These parameters 

can be empirically obtained by fitting to lattice energies and crystal structures, or by 

extrapolation from liquid simulations.  The final term in Equation 2.2 is Coulomb’s law, which 

describes the ionic interactions between partially or fully charged groups.  In this equation, qi 

describes the effective charge on atom i, rij is the distance between atoms i and j, and ε is the 

dielectric constant.  Parameters for this term are obtained through ab initio quantum-mechanical 

calculations.   

 Evaluation of the nonbonded terms is computationally quite costly because the number of 

local terms grows linearly with the number of atoms, whereas the number of nonbonded terms 
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grows quadratically.  Because the non-bonded Coulomb forces change more slowly with 

distance than the bonded terms, algorithms using cutoff functions and Ewald summation 

[80,81,82] have been developed to reduce the computational complexity of the nonbonded 

calculation.  The evaluation of the electrostatic terms is particularly costly when explicit 

representations of the solvent, which may involve hundreds of thousands of atoms, are included 

in the system.  When structural water molecules and the local effects of solvation are not vital in 

the simulation of the protein, explicit water molecules may be replaced by a continuum 

representation, which saves computer time by reducing the computational complexity of the 

system.  In Section 2.4, we discuss techniques for modeling the solvent using explicit all-atom, 

or implicit mean-field representations.   

2.4 Modeling the Environment: Solvent Models 

 Due to the central role of water in the dynamic process of protein folding, accurate 

simulations depend upon accurate modeling of the protein’s surrounding environment.  The most 

accurate water models for use with simulation are explicit water models, which model each 

water molecule individually.  A few families of explicit water models have been developed 

[37,83], but the group of models most commonly used with the AMBER forcefield is known as 

the transferable intermolecular potential (TIP).  In this model, each water molecule maintains a 

rigid geometry in which charges are placed on specific sites.  In the TIP3P model [84], for 

example, partial positive charges are placed on the hydrogen atoms, which are balanced by a 

negative charge located on the oxygen atom.  The TIP4P model [84,85] moves the negative 

charge off of the oxygen and onto a fourth site between the two hydrogen atoms in order to better 

reproduce thermodynamic and structural data obtained from experiment, such as the radial 

distribution function.  Interaction between molecules is described using pairwise Coulombic and 
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Lennard-Jones expressions.  Solvent models are parameterized to accurately reproduce bulk 

thermodynamic and kinetic properties of bulk water in order to accurately model the effect of 

placing a biomolecule in an aqueous solvent.  The TIP4P-Ew solvent model [86], for example, is 

able to reproduce the experimental bulk density and enthalpy of vaporization of water, as well as 

structural properties such as x-ray scattering intensities, at a large range of temperatures.  Despite 

the accuracy of these models, the number of particles that they require often leads to prohibitive 

computational expense, as discussed above. 

 An alternative to explicit modeling of water molecules is provided by replacing them 

with a dielectric continuum that approximates the properties of liquid water.  The use of an 

implicit solvent model not only saves computational time and resources, but potentially gives 

improved sampling due to its lack of viscosity, which allows for a more complete search of 

conformational space to occur during the simulation.  The potential energy function given in 

Equation 2.2 represents the energy of the molecule in vacuum.  In order to calculate the total 

energy of the solvated system, the solvation free energy, which is the free energy of transferring 

the molecule from vacuum to solvent, must be added to the vacuum energy.  The solvation free 

energy is assumed to be decomposable into electrostatic and nonelectrostatic components as 

follows 

nonelelsolv GGG                          (2.3) 

where ΔGnonel is the free energy of  solvating a molecule with a partial charge of zero on every 

atom, and ΔGel is the free energy of removing all charges from the molecule while in vacuum, 

then adding them back in the continuum solvent environment.   

 The most accurate model of electrostatic interactions in a dielectric medium is the 

Poisson-Boltzmann (PB) equation [87], which can in simple cases be used to exactly calculate 



27 

 

solvation free energy of the solute and solvent.  For systems of complex geometries, however, 

the PB equation cannot be solved exactly.  The generalized Born (GB) method [88,89] has 

thereby been extensively implemented to approximate the physics of the PB equation, while 

decreasing its computational intensity.  In this analytical approximation to the Poisson-

Boltzmann equation, atoms are modeled as charged spheres with an internal dielectric that is 

lower than that of the environment.  Each atom is assigned an effective radius such that the 

solvation free energy can be calculated using the Born formula.  Different GB models differ in 

how they calculate the effective Born radius, which indicates the level of screening of atomic 

charge by the solvent.  The Hawkins-Cramer-Truhlar (HCT) model [90] is known as a pairwise 

GB model, as it approximates the volume integral as a sum over the contribution of each atom.  

The Onufriev-Bashford-Case (OBC) GB model [91] is an improvement to the HCT model, 

which aims to correct the values of the effective Born radius for buried atoms, which were too 

low in the HCT model.  Further improvements to these models, such as those given in the recent 

models known as GBNeck [92] and GBNeck2 [93] continue to increase the accuracy of the 

implicit solvent formulation. 

 As with many other approximations made in simulations, the use of an implicit solvent 

model represents a tradeoff between accuracy and tractability.  Another approach to modeling 

the thermodynamic and kinetic effects of placing a protein in a solvent, which will be discussed 

below in Section 2.5, is to use a phenomenological model, such as Brownian or Langevin 

dynamics, which mimics the effect of solvent on the system.   

2.5 Modeling Motion: Deterministic and Stochastic Models  

 The above sections of this work describe how the system of protein and explicit or 

implicit solvent are modeled in terms of the potential energy function.  Once the system has been 
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thus set up, propagation of the chosen equations of motion over a discrete time step yields the 

time-dependent motion of the system.  Among the choices available for the equations of motion, 

this section will focus on deterministic dynamics as described by Newton’s equations, and 

stochastic dynamics as described by the Langevin formalism. 

2.5.1 Deterministic Dynamics: Newton’s Equations of Motion 

 Under Newtonian dynamics, the equations of motion for a system of N atoms may be 

written as a first-order differential equation as follows: 

))(()())(( tXUtVMtXF


   .          (2.4) 

In this equation, )(XF


 is the systematic force as a function of the Cartesian vector X


of the N 

atoms in the system.  The force is equivalent to the diagonal mass matrix M multiplied by the 

derivative of the velocity vector V


, or to the negative gradient of the potential energy )(XU


.  

This gradient may be expressed in terms of its components i=1,…3N, as follows 
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in which αi denotes the x, y, or z component of an atom.  Analytical solutions are only available 

for the simplest systems, requiring these equations to be integrated numerically.  The result of 

the integration is a sequence of coordinate and velocity pairs at each chosen time step.   

 The choice of time step for the simulation is dictated by the timescale of the highest-

frequency modes of motion that still impact molecular structure.  Although many components of 

molecular motion occur on very short timescales, the collective motion of a biomolecule is 

highly cooperative, and local fluctuations have the ability to impact global structure.  The 

frequencies of bond vibrations are on the scale of 10
14

 s
-1

, which generally restricts the time step 

in an MD simulation to be on the order of 10
-15

 s, or 1 fs.  A factor of two can be gained in the 
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length of the time step if constrained dynamics is used to maintain the rigidity of bonds to 

hydrogen, as described below in Section 2.5.2.  Typical simulations are run on the order of 

nanoseconds, although recent improvements in computing power, as well as the development of 

molecular mechanics programs such as NAMD, GROMACS, and Desmond for massively 

parallel computer architectures, are increasingly bringing simulations to the microsecond 

timescale [94,95,96].   

The choice of starting structure or structures for the simulation depends largely upon the 

goal of the simulation, the size of the system to be studied, and the availability of experimental 

coordinates.  In studies where the goal is to obtain statistical properties of an ensemble of 

biomolecules, a large number of starting structures in diverse conformations is customarily used.  

Additionally, the chaotic nature of individual trajectories obtained from MD simulations often 

results in more reliable data being obtained from averages over several trajectories, rather than 

taken from a single, long trajectory.  Single trajectories, however, remain useful when examining 

the atomic details of protein or polymer conformational change and function.  

 In order to begin the simulation, an initial velocity vector is set in order to bring the total 

kinetic energy of the system to the expected value at the target temperature at which the 

simulation will be run.  According to the classical equipartition theorem [97], each translational 

degree of freedom of a molecule in thermal equilibrium has the same average thermal energy.  

The average kinetic energy may thus be expressed as 
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where NF is the total number of translational degrees of freedom in the system.  Velocity 

components are thereby assigned from a Gaussian distribution with a variance of (kBT)/m and 

zero mean, as the following expression should hold at equilibrium: 

mTkv B /2 


    .           (2.7) 

Using this relation, the instantaneous temperature is defined as 
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                         (2.8) 

and the temperature can be adjusted during the simulation to match the desired temperature by 

scaling the velocities by )(/ tTT . 

Before the production run is initiated, one or more rounds of equilibration are usually 

necessary in order to slowly bring the simulation to the desired temperature and to relax the 

protein and/or solvent structures to a state of low energy.  During the equilibration, exchange 

between kinetic and potential energy occurs, and the system is considered to be equilibrated once 

there is convergence of these energy terms (this behavior describes that of the microcanonical 

ensemble; for a discussion of other ensembles, see Section 2.5.3 below).  After the force on all 

particles is calculated according to Equation 2.4, the positions of the particles are propagated 

through time, resulting in a trajectory.    

2.5.2 Integration Algorithms 

The choice of integration algorithm is vital to ensuring the reliability of a molecular 

dynamics simulation.  Criteria for a good integration algorithm include accuracy and stability for 

long time steps and the avoidance of long-term energy drift.  One of the most widely-

implemented group of integration algorithms is the Verlet family [98], including the leapfrog 

[99], velocity [100], and position Verlet [101] algorithms.  These algorithms not only exhibit 
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stability, but are also symplectic, which results in the bounding of energy fluctuations and 

preservation of the conservative property of the system. 

In the Verlet propagation scheme for Newtonian dynamics, the equation of motion is 

written as in Equation 2.4.  To discretize this problem, the continuous variables X(t) and V(t) are 

approximated by values at discrete time steps nΔt and written as X
n
 and V

n
.  The positions and 

velocities of the system are then recursively defined  

nnn FtVV
~1                (2.9) 

and the values of the positions from two previous steps are used to calculate the updated position 

as follows: 
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A Taylor expansion around X(t) is then used to solve for the updated position: 
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Velocities are not used in the algorithm, so they must be estimated using the positions, through 

subtraction of the Taylor expansion for X(t-Δt) from that for X(t+Δt) to obtain:   
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          (2.12) 

 Variants of the Verlet algorithm include the leapfrog scheme [99], the velocity Verlet 

[100], and the position Verlet [101].  Using the leapfrog scheme, the velocity is defined at half-

timesteps 2/1nV , while the positions are defined at whole timesteps X
n 

of Δt.  A point in phase 
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space is thereby transformed to the next as },{},{ 12/12/1   nnnn XVXV , which may also be 

written as 
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In order to increase the simulation timestep, constrained dynamics is often employed, in 

which the highest-frequency motions, such as vibration, are frozen through the addition of 

algebraic constants to the equations of motion.  As an example, we have seen in Equation 2.2 

that the bond length potential is approximated using the harmonic form 
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where r is the interatomic distance and k is the force constant.  The bond length may be 

constrained as follows: 
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 One form of constrained dynamics, known as the SHAKE algorithm [102], has been 

implemented with the leapfrog Verlet algorithm as follows:  
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where Λ is a vector of Lagrange multipliers.  A symplectic variant of SHAKE known as 

RATTLE [103] is used with the velocity Verlet algorithm; although SHAKE is not symplectic, it 

produces results that are identical to those of RATTLE for the positions and results in velocities 

that are only slightly perturbed. 
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2.5.3: Other Ensembles 

 The quantities obtained in an MD simulation performed as described in the previous 

section are equivalent to quantities in the microcanonical (NVE) ensemble, as the volume and 

number of particles are fixed.  Although the temperature fluctuates during the simulation, the 

total energy is a constant, as the Hamiltonian is a conserved quantity in the presence of 

conservative forces.  Unless studying dynamic properties such as diffusion or relaxation 

phenomena, the microcanonical ensemble is not the most convenient for comparison with 

experimental data.  For thermodynamic properties to be compared with experimental results, the 

simulation should be run in the canonical (NVT) or isothermal-isobaric (NPT) ensemble.  To run 

simulations in these ensembles, techniques have been developed in which the system is 

considered to be in contact with a reservoir, and is no longer determined by a real Hamiltonian or 

held to satisfying the conservation laws of Newtonian dynamics.  

 The simplest method used for running constant-temperature MD simulation involves 

scaling the velocity vector at each timestep to fix the desired kinetic temperature T at the target 

value T0, as described above.  This approach, however, results in rapid energy transfer among the 

various degrees of freedom in the system, and often leads to the pumping of energy into low-

frequency modes.  A less drastic approach to running MD simulations at constant temperature is 

to use the Berendsen weak coupling thermostat [104].  In this approach, a diffusive process is 

mimicked by introducing a stochastic coefficient of friction which controls the relaxation rate of 

coupling to the heat bath.  The modified equations of motion using the Berendsen thermostat are 

as follows: 
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where γt has units of inverse time, τ is an empirical constant of the decay time of the coupling to 

the heat bath, T0 is the target temperature, and T is the instantaneous kinetic temperature.  This 

implementation effectively scales the velocity vector by the factor 
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The use of the adjustable coupling parameter γ allows for careful control of the rate at which the 

target temperature is obtained.  Weak coupling to the heat bath through the use of a small value 

of γt results in the scaling factor approaching unity, and the results approach those of the 

microcanonical ensemble.  Strong coupling through the use of a large value of γt results in 

significant exchange of energy between the system and the thermal reservoir.    

 A similar approach is used for constant-pressure MD simulations, in which the Cartesian 

positions and volume are scaled as follows 
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where β is the isothermal compressibility, P0 is the target pressure (or external pressure Pex), P is 

the instantaneous pressure, and τ controls the strength of the pressure coupling.  This approach 

permits the volume of the system to fluctuate by uniformly changing the unit cell size as the 

internal pressure approaches the external pressure.   
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Although the weak coupling thermostat and barostat methods are convenient, they 

generally do not produce structures from the canonical or isothermal-isobaric ensembles.  In 

order to generate the correct ensembles, more accurate extended-system methods introduce 

additional degrees of freedom to the system in order to mimic its environment.  The Nosé-

Hoover method [105,106], for example, produces the true canonical (NVT) by reducing the 

external heat bath to an additional degree of freedom in the system Hamiltonian.  The thermal 

equilibrium process is controlled through choice of the friction coefficient as well as a fictitious 

mass.  In order to obtain the correct isothermal-isobaric ensemble, an analogous method known 

as the Andersen barostat [107] was developed, in which additional degrees of freedom are used 

to describe a fictitious pressure piston which allows the volume of the system to fluctuate.  

 If stochastic, rather than deterministic, dynamics are used in the simulation, Langevin 

dynamics may be used to control the temperature of a system [108], and the end result is an 

approximation of the canonical ensemble.  As with the extended-system methods discussed 

above, such as the Nosé-Hoover and Berendsen thermostats, the Langevin equations of motion 

introduce additional degrees of freedom [109].  Friction due to drag on the solute from the 

solvent, and random collisions between solvent and solute are added to the systematic force in 

order to represent the heat bath.  Section 2.5.4 discusses the use of Langevin dynamics in 

simulations of biomolecules. 

2.5.4 Stochastic Dynamics: The Langevin Equation 

 Langevin dynamics [110] aims to describe the motion of a particle subject to Brownian 

dynamics, which governs the motion of small particles immersed in a fluid.  Early investigations 

into Brownian motion were made on small particles of colloidal size, such as pollen grains and 

dust particles.  The theory, however, has been extended to collective properties of macroscopic 
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systems, as the ensemble of random collisions undergone by the system is able to produce a 

systematic effect [111].  The Langevin equation approximates two degrees of freedom that are 

omitted in Newtonian dynamics: namely, random collision of the solute with the solvent, and the 

frictional drag on the solute as it moves through the solvent.  Although the Langevin equations 

describe the behavior of a solute in a solvent, they do not constitute an implicit model of 

solvation, as there is no accounting for electrostatic screening or for the hydrophobic effect.   

In the Langevin equation, a frictional term and a random force are added to the internal 

force as follows: 

)()())(()( tRtXMtXUtXM


                             (2.21) 

where U(x) is the potential energy of the solute, )(tR


 is a random force which mimics molecular 

collisions of the solute with the solvent, and γ is the collision frequency of the solute.  The 

random force is assumed to be independent of the positions, velocities, and forces of the particles 

on which it acts, and to obey a Gaussian distribution with zero mean: 
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 Increasing the collision frequency γ has the effect of damping the low-frequency 

vibrational modes of the protein molecule.  Values of γ can be chosen for the system under study 

using hydrodynamic theory.  Stokes’ law for a particle of radius a and mass m describes how the 

frictional resistance of a spherical particle in solution varies linearly with its radius:  

ma /6                          (2.23) 

where η is the solvent viscosity.  Water, for example, has a value of γ equal to 54.9 ps
-1

 at room 

temperature.  Alternatively, the Stokes-Einstein law may be used to choose a value of γ that 
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reproduces experimental values of translational diffusion constants in the diffusive limit.  Using 

this relation, in the diffusive limit the diffusion constant Dt is related to the collision frequency 

by 

 mTkD Bt /     .                   (2.24) 

The value of γ may also be chosen in order to accelerate configurational sampling in simulations, 

a point that will be revisited in Chapter 3, in which the effects of a novel method combining a 

self-guiding algorithm with Langevin dynamics on the resulting ensemble and sampling rate are 

examined. 

2.6 Enhancing Sampling 

 Despite the advancements in computer power that have occurred since the simulation of 

proteins was first undertaken, it remains challenging to generate correct canonical ensembles of 

biomolecules simulated at biological temperature.  Although simulations on the order of 

microseconds may now be routinely run [96], the approximations that are made in molecular 

mechanics force field functional form and parameterization, as well as limits in conformational 

sampling, limit the depth of new knowledge that may be gained from longer simulations [112].  

In order to overcome these problems, many methods have been developed which aim to sample 

slow events such as large conformational changes and rare events such transitions between two 

states, to calculate reaction rates, and to increase the volume of conformational space that is 

available to the system under study.  We briefly list here a few examples of these algorithms; the 

reader is directed to References [113,114] for comprehensive reviews. 

Targeted MD [115], accelerated MD [116], and umbrella sampling [117] use restraining 

potentials in order to bias the system toward a specific state.  Although these methods are useful 

for rapid, preliminary sampling of large-scale conformational changes, the biasing potential must 
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be known in advance, and the resultant dynamics may be nonphysical.  Approaches such as 

metadynamics [118], conformational flooding [119], and adaptively biased molecular dynamics 

[120] add potential energy terms to the system while the simulation is running which prevent it 

from revisiting areas of the landscape that have already been sampled.  These methods do not 

require that an estimate of the energy landscape is provided at the outset of the simulation.  

Additionally, they may be used to calculate free energy as well as to enhance conformational 

sampling.   

Transition path sampling [121] and nudged elastic band methods [122] aim to deduce 

reaction mechanisms when two stable states of the system are known.  Transition path sampling 

generates an ensemble of probabilistically weighted trajectories between the two points after 

observing many transitions, while nudged elastic band performs constrained optimization to 

calculate a single minimum energy pathway between the two known states.  Although these 

methods are very useful in the simulation of rare events, the ruggedness of the potential energy 

landscape introduces difficulty in locating saddle points, and requires the introduction of reaction 

coordinates, which are often difficult to determine before the simulation is run. 

In order to calculate reaction rates and energies, many variants of Markov state models 

have been developed for application to protein folding simulations [123,124].  In assuming that a 

process is Markovian, one assumes that the distribution of future states of the process is only 

dependent upon the present state, not on the sequence of events which preceded it.  In 

constructing a Markov model, state space is divided into discrete regions, and independent, short 

trajectories are run which visit each region.  The observed transitions between states are then 

used to construct a matrix of transition probabilities, which may be used to describe the system at 

long timescales.  A major advantage of Markov approaches is that the timescale of the 
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simulations may be shorter than the longest relaxation time of the system.  Difficulties arise, 

however, in the partitioning of state space, and the choice of reaction coordinate is vital to the 

success of the approach. 

One common strategy of enhancing conformational sampling that has been incorporated 

into many simulation algorithms is to periodically afford the simulated molecule the opportunity 

to escape from energy minima and to thereby sample a much larger volume of phase space than 

by conventional methods.  This strategy may be accomplished by enhancing low-frequency 

modes of motion in order to cross potential energy barriers, as in the self-guided Langevin 

dynamics algorithm [125] described in Chapter 3 of this work.  In this formalism, the system is 

simulated using Langevin dynamics, but an additional force that is determined from averaging 

over previous time steps is added back into the system.  Another strategy of enhancing sampling 

is an extension of parallel-tempering Monte Carlo to molecular dynamics, in which periodic 

attempts are made to exchange structures that are simulated at different temperatures.  This 

method, known as replica exchange molecular dynamics [126], is outlined in more detail in 

Chapter 4 of this work.  Although the trajectories obtained with these self-guided Langevin 

dynamics and replica-exchange molecular dynamics are not deterministic, their algorithms may 

be developed such that correct ensemble averages are obtained as functions of temperature. 
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3. Rigorous Evaluation of Thermodynamic Stability and Kinetic Rates of Peptide Folding 

Using Enhanced Sampling: Application to Self-Guided Langevin Dynamics 

Abstract 

 A complete evaluation of any enhanced sampling method should rigorously address the 

effect of the method on the kinetic rate of folding and the distribution of structures in the 

resulting free energy landscape.  Although self-guided Langevin dynamics (SGLD) simulations 

have been suggested as a powerful method for enhancing the conformational search efficiency of 

molecular dynamics (MD) simulations, the sensitivity to variation of this method’s two key 

parameters, as well as a quantitative description of the kinetic rates and thermodynamic 

ensembles resulting from the use of this method, have not yet been well explored.   

In this work, 200 ns SGLD simulations of the β-hairpin tryptophan zipper 2 and the trp-

cage miniprotein at 300 K were studied in comparison with standard 100 ns Langevin dynamics 

(LD) and replica exchange molecular dynamics (REMD) simulations at temperatures ranging 

from approximately 250 K to approximately 500 K.  Twelve parameter sets were employed in 

the SGLD simulations for each system, with variations in the guiding factor and the averaging 

time used.  Forty-eight trajectories were run for each temperature and averaging time in the LD 

and SGLD simulations, and for each set, native populations, first passage times, and rate 

constants were determined in order to assess the efficiency of SGLD versus simply raising the 

temperature of an LD simulation.  Comparing the results from SGLD against a series of 

reference LD simulations at different temperatures, we explore whether the speedup obtained 

from a high-temperature LD simulation is accompanied by gains or losses in thermodynamic 

stability.  This analysis gives a more complete and rigorous evaluation of the sampling method.     

The total simulation times for trpzip and trp-cage were 149.3 μs for each system, while the total 
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simulation time for K19 was 33.6 μs.  The LD data produced in this study not only provides a 

point of comparison for the SGLD results presented here, but also provides thermodynamic and 

kinetic reference data for future methodological studies of these systems.  

Our results indicate significant sensitivity; certain SGLD parameter sets are effective in 

accelerating the folding process while maintaining populations of native states of the peptides, 

whereas others are not.  Additionally, certain parameter sets result in extreme distortion of the 

free energy landscape of the test system, requiring ensemble corrections to be used with this 

method. [127,128]  Although trpzip2 and trp-cage are similar sizes, their differing topologies, 

folding rates, and mechanisms result in the requirement of different averaging times and guiding 

factors in order to fold efficiently and maintain a folded topology.  In order to test the 

transferability of parameter sets between peptides of similar size but differing structural motifs, 

the most effective set of parameters from the SGLD simulations of trpzip2 was applied to the α-

helix K19.  The results obtained indicate that the parameters that are most successful in 

accelerating folding and maintaining populations of folded states of a β-hairpin are also able to 

accelerate the kinetics of an α-helix of comparable size, although the thermodynamic stability of 

the system is greatly decreased relative to the LD reference simulation.  Careful choice of 

parameters must be made with SGLD in order to ensure the kinetic efficiency and 

thermodynamic stability of the system under study.   

3.1 Introduction 

 One of the greatest obstacles facing molecular dynamics simulations of biopolymers is 

the size and complexity of the free energy landscape of folding.  The presence of local minima 

on the energy landscape often causes large-scale conformational changes in proteins to occur on 

a timescale that renders brute force simulations of these rare events unfeasible, particularly when 
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statistical characterization is necessary to obtain kinetic and thermodynamic information about 

the system rather than anecdotal observations.  This limitation has motivated the development of 

methods that decrease the computational demands of long timescale simulations by improving 

their efficiency or by speeding slow events in the conformational search process [113,129,130].  

 One such method that has been developed to enhance the conformational search in a 

biomolecular simulation is the self-guided molecular dynamics method (SGMD) [129].  The 

method is known as “self-guided” because information obtained during the simulation is used 

during that same simulation to enhance the conformational sampling.  In SGMD, the total force 

is defined as the sum of the interaction force if


 and the guiding force ig


 as follows: 

ii gfp


    .             (3.1) 

From the definition of the local average of the property P at conformation n taken over L local 

conformations, 
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the guiding force is calculated as the local average of the nonbonded forces 
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where λ is the guiding factor, δt is the time step, and tL=Lδt is the time over which the local 

average is taken.  SGMD simulations thus employ an equation of motion that uses the guiding 

force, calculated as a local average of the total instantaneous force, to accelerate the systematic 

motion defined by the local averaging time.  Although this method has demonstrated efficiency 

in enhancing conformational search [130,131,132], it was found that the use of a guiding force 

may result in an altered conformational distribution, and that the inclusion of high-frequency 
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bonded interactions in the guiding force calculation led to excessive noise.  Additionally, this 

method was found to be insufficient in enhancing the conformational search in stochastic 

dynamics simulations [133]. 

These drawbacks to SGMD resulted in the development of self-guided Langevin 

dynamics (SGLD) [125], which uses the local average of momenta, rather than the forces, to 

calculate the guiding force as well as to enhance conformational sampling efficiency.  As 

described in Chapter 2 of this work, Langevin dynamics has been utilized extensively in 

molecular simulations in order to mimic the random collisions of solute and solvent, and as a 

scheme for controlling the temperature [110,134].  Direct application of a guiding force based on 

momentum is problematic in a standard MD simulation, as it has the ability to cause an uneven 

distribution of kinetic energy through the system.  In Langevin dynamics, each degree of 

freedom is independently coupled with a heat bath, which allows for the use of a momentum-

based guiding force without compromising the energetic integrity of the system.  The 

implementation of SGLD employed in this work follows that outlined in the original reference of 

Wu and Brooks [125].   

 For an N particle system, the equation of motion employed in an SGLD simulation is the 

sum of the Langevin equation of motion and a guiding force ig


 as follows: 

iiiiii gRpfp





     .           (3.4) 

Here, γi is the collision frequency, iR


is a random force, and λi is the guiding factor for atom i.  In 

an SGLD simulation, three parameters are used to define the self-guiding effect.  The local 

averaging time, tL, is the time period over which the guiding factor λ is calculated as an average 

of instantaneous forces.  The local averaging time determines which of the slow motions are to 
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be enhanced; because low-frequency motions of a protein occur on a long time period, it is 

intended that the guiding force is used to describe the systematic motion over a long time scale.  

It has been shown that the time derivative of the momentum may be dropped from Equation 3.4 

for long-time dynamics [135,136], allowing the equation of motion to be rewritten as follows: 

iiiiii gRfp


     .            (3.5) 

 As in Equation 3.3, the guiding force is calculated as a local average over L local 

conformations of the total force given in Equation 3.5  
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The friction force on atom i is ii p


 , indicating by Equation 3.6 that the guiding force ig


is the 

local average of the friction force.  Through the guiding forces, extra energy is introduced into 

the system in the form  
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where mpr ii /


  is the velocity of atom i. 

It is therefore necessary to add a constraint term   to the equation of motion to cancel the extra 

energy, as follows: 
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Having established the background and the equation of motion of the system, we now turn to a 

discussion of the simulation algorithm, which follows that of Brunger et al. [137] with the 

addition of Equation 3.9. 

3.1.1 Simulation Algorithm 

 As the first step in the SGLD algorithm, forces (interaction, random, and guiding) are 

calculated at the initial time step.  The interaction forces are those described by the force field, 

the random forces are assigned from a Gaussian distribution with zero mean, and the guiding 

forces are the local average of the friction forces calculated from simulation steps over the 

averaging time as follows: 
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The value of the guiding force is initially set to zero.  The scaling parameter χi is then determined 

through making an unconstrained half step in which the value of the constraint parameter is 

estimated from the unconstrained velocity and the value of the scaling parameter χi is calculated 

from the value of the constraint parameter: 
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The variable )(tr 

 is the unconstrained velocity of atom i at time t.  Finally, velocities are 

advanced to the next half-timestep 
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and positions are advanced to the next time step: 
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Coordinates are constrained using the algorithm of choice, such as SHAKE.  Time steps are 

propagated by iterating from Equation 3.10, with a time value of t+δt.  

Prior studies on SGMD [129,130,131,132,138] and SGLD [125,139,140,141,142] have 

compared the efficiency of these types of simulation to regular Langevin dynamics simulations 

for peptides and proteins of various conformations.  Although reports have been made of the 

ability of SGLD to accelerate slow conformational changes, these studies have not quantified the 

effect of SGLD on these rates of transition, such as through analysis of first passage times and 

relaxation rates versus standard LD simulation.  The choice of parameter sets in prior studies 

employing SGLD has been limited to a narrow range of averaging times and guiding factors.  In 

their study of a 16-amino acid helical peptide, Wu and Brooks [125] tested an averaging time of 

0.1 ps with guiding factors of 0.25 and 1.0.  Study of structural relaxation of staphylococcal 

nuclease using SGLD [140,141] employed averaging times of 0.1 ps and 0.5 ps, with guiding 

factors of 0.25 and 1.0.  All of these parameter sets have been anecdotally reported to be 

successful in accelerating slow conformational changes through analysis of a limited number of 

trajectories obtained from relatively short simulations.  
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It is the goal of the present study to systematically quantify the effect of SGLD on the 

thermodynamics and kinetics of folding using a statistically significant ensemble of long-time 

simulations and a broader range of parameter sets than has previously been explored.  We hope 

to identify trends in successful, as well as unsuccessful, combinations of averaging times and 

guiding factors to determine which parameter sets have the ability to accelerate the kinetics of 

folding while maintaining reasonably accurate thermodynamic properties.  We have also applied 

the most efficient parameter sets from our study of β-hairpin trpzip2 to α-helix K19 in order to 

test the transferability of parameters from one structural family of peptide to another of similar 

size but differing topology.   

3.2 Methods 

3.2.1 Model System: Trpzip2 

The first model system chosen for study was the tryptophan zipper (trpzip).  First 

developed by Starovasnik and coworkers [143], this β-hairpin structural motif is stabilized 

through cross-strand tryptophan pairs.  Within the trpzip family of structures, trpzip2 

(SWTWENGKWTWK, with a type I' β-turn at NG), has the most cooperative melting curve and 

highest stability (approximately 90% at 300K).  Thermodynamic properties for this peptide have 

been determined by NMR and CD spectroscopy, and a family of structures was refined using 

restraints from NMR experiments [143] (PDB code 1LE1).  In the simulations described below, 

the N-terminal of the peptide was acetlyated and the C-terminal was amidated, in accordance 

with experiment [143].  

3.2.2 Model System: Trp-cage 

 The second peptide studied in this work is the trp-cage miniprotein, which was designed 

for use as a model system in protein folding studies [72].  Derived from the C-terminal fragments 
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of the 39-residue exendin-4 peptide and made increasingly stable with the introduction of a 

solvent-exposed salt bridge and helical N-capping residues, trp-cage stably incorporates several 

elements of protein secondary structure.  An α-helix extends from residues 2-9, a 310 helix runs 

from residues 11-14, and a C-terminal polyproline II helix packs against the central tryptophan 

residue to form a highly stable hydrophobic core.  The simulations in this study used the trp-cage 

TC5b amino acid sequence (NLYIQWLKDGGPSSGRPPPS), the structure of which was 

determined via NMR (PDB code 1L2Y) [72].  The high stability and fast folding rate of trp-cage 

make it an ideal model system for protein folding studies, and its thermodynamic and kinetic 

properties have been extensively studied via both experiment and simulation 

[144,145,146,147,148].  

3.2.3 Model System: Helix K19 

 The third model system chosen for study was the peptide K19, which is an α-helix with 

sequence AcGGG-(KAAAA)3-K-NH2.  Although the α-helical conformation has been 

experimentally shown to be unfavorable for short polyalanine peptides in water at room 

temperature [149,150,151], it is believed that helicity is favored by either the inclusion of polar 

side chains in the sequence [149,152,153], or the presence of positive charges at the C-terminus 

interacting with the helix macrodipole [71].  K19 has been synthesized, and CD and NMR have 

been used to characterize the fractional helicity of each residue of the peptide [154].  These 

experiments were complemented by computational studies in which the residue-specific 

fractional helicity of the peptide was determined, as well as its melting temperature.  

Additionally, the steps in helix formation of this peptide, as well as the residue contacts that 

maintain helical structure, were determined [154]. 
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3.2.4 Langevin Dynamics Simulation 

For trpzip2, 48 independent 100 ns LD trajectories were obtained at each of the following 

temperatures: 300 K, 325 K, 350 K, 363 K, and 375 K.  Version 10 of the AMBER molecular 

dynamics package was used for these simulations [65].  A version of the ff99 force field with 

modified backbone parameters to reduce α-helical bias [76] was employed.  All nonbonded 

interactions were evaluated at each time step and SHAKE was used to constrain all bond lengths.  

The time step used was 2 fs, and systems were maintained at constant temperature.  The collision 

frequency used was 1.0 ps
-1

.  All simulations used the Generalized Born (GB) implicit solvent 

model [155] with GB
HCT

 implementation [90] in AMBER.  This protocol was chosen to match 

that used in a previous study, in which it was effective in quantitatively reproducing the structure 

of trpzip2, as well as its temperature-dependent stability [156].  Forty-eight random starting 

structures were selected from a trajectory obtained from a standard high-temperature LD 

simulation at 400 K.   

For trp-cage, 48 independent 100 ns LD trajectories were obtained at each of the 

following temperatures: 250 K, 285 K, 300 K, 320 K, and 355 K.  All simulations used the 

Generalized Born (GB) implicit solvent model with GB
OBC

 implementation [157] in AMBER.  

All other simulation parameters were identical to those described above for trpzip2.  This 

protocol was chosen to match that used in a previous unpublished study which quantitatively 

reproduced the structure and temperature-dependent stability of trp-cage.  Forty-eight random 

initial structures were selected from a REMD simulation at 400 K.  For the helix K19, 48 

independent 100 ns Langevin dynamics trajectories were obtained at each 280 K and 300 K.  

Once the LD simulations were initiated, all nonbonded interactions were evaluated at each time 

step and SHAKE was used to constrain bonds to hydrogen atoms.  The time step used was 2 fs, 
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and systems were maintained at constant temperature.  The collision frequency used was 1.0 ps
-1

.  

All simulations used the Generalized Born (GB) implicit solvent model [155] with GB
OBC

 

implementation [89,91].  The ff99SB forcefield [76] was employed.  This protocol has 

previously been reported to be effective in the reproduction of experimental determination of the 

structure and folding process of K19, as well as its melting temperature [154].  Extended starting 

structures of K19 were built using the leap module included in the AMBER 10 package.   

3.2.5 Replica Exchange Molecular Dynamics Simulation 

In the REMD simulation of trpzip2, fourteen replicas covering a temperature range of 

251.7-554.7 K were used.  Exchanges between neighboring replicas were attempted at intervals 

of 1 ps.  The REMD simulation was run to 100,000 exchange attempts, for a total of 100 ns per 

replica.  Other parameters were as described above for the LD simulations of trpzip2.  In the 

REMD simulation of trp-cage, fourteen replicas covering a temperature range of 251.5-540.2 K 

were used.  Exchanges between neighboring replicas were attempted at intervals of 1 ps.  The 

REMD simulation was run to 80,000 exchange attempts, for a total of 80 ns per replica.  Other 

parameters were as described above for the LD simulations of trp-cage. 

3.2.6 Self-Guided Langevin Dynamics Simulation 

For each of the 12 SGLD parameter sets used in simulation of trpzip2 and trp-cage, 48 

independent trajectories of 200 ns were generated at 300 K.  The sander module of AMBER 

[65], which includes an SGLD implementation, was employed.  Initial structures and parameters 

were as described above for the LD simulations, with the addition of averaging time and self-

guiding force parameters.  Four averaging times (0.2 ps, 1.0 ps, 2.0 ps, and 10.0 ps) were 

employed.  For each averaging time, three self-guiding factors were used: 1.0, 5.0, and 10.0 (see 
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Table 3.1 for nomenclature of parameter sets employed in SGLD simulations of trpzip2 and trp-

cage).   For each system, 48 trajectories were obtained for each of the 12 parameter sets.   

For the helical system K19, LD simulations were run at 280 K and 300 K, and three 

SGLD parameter sets were tested: an averaging time of 2.0 ps was used with self-guiding factors 

of 1.0, 5.0, and 10.0.  These parameter combinations correspond to sets SGLD 3, SGLD 3a, and 

SGLD 3b, as indicated in Table 3.2.  Due to the necessity of a small guiding factor to produce 

correctly folded states (discussed below), two additional parameter sets with guiding factors of 

0.25 and 0.5 (SGLD 3c and SGLD 3d, respectively) were tested.  All other parameters were as 

discussed above for the Langevin dynamics simulations of K19.  The same starting structures 

were used for the SGLD simulations as in the LD simulations.  Forty-eight independent 

trajectories of 100 ns in length were obtained for each temperature of LD, and forty-eight 

independent trajectories of 200 ns in length were obtained for each SGLD parameter set. 

Table 3.1:  Parameter sets used in self-guided Langevin dynamics simulations of trpzip2 and trp-cage. 

Parameter 

Set 

Averaging Time 

(ps) 

Guiding 

Factor 

SGLD 1 0.2 1.0 

SGLD 1a 0.2 5.0 

SGLD 1b 0.2 10.0 

SGLD 2 1.0 1.0 

SGLD 2a 1.0 5.0 

SGLD 2b 1.0 10.0 

SGLD 3 2.0 1.0 

SGLD 3a 2.0 5.0 

SGLD 3b 2.0 10.0 

SGLD 3c 2.0 20.0 

SGLD 4 10.0 1.0 

SGLD 4a 10.0 5.0 

SGLD 4b 10.0 10.0 
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Table 3.2:  Parameter sets used in self-guided Langevin dynamics simulations of K19. 

Parameter 

Set 

Averaging Time 

(ps) 

Guiding 

Factor 

SGLD 3 2.0 1.0 

SGLD 3a 2.0 5.0 

SGLD 3b 2.0 10.0 

SGLD 3c 2.0 0.25 

SGLD 3d 2.0 0.5 

 

3.2.7 Analysis 

The trajectories obtained from the LD, REMD, and SGLD simulations were analyzed 

using the AMBER ptraj module [65].  For trpzip2, the root-mean-square deviation (RMSD) of 

the backbone atoms of residues 2-11 of trpzip2 from the experimentally determined native 

structure (model 1 of PDB code 1LE1) [143] was calculated.  Terminal residues were omitted to 

remove the effects of fluctuations.  An RMSD cutoff of 1.7 Å was used to determine native 

structures on the basis of the free-energy profile along RMSD where the native minimum 

reached up to 1.7 Å (data not shown).  For trp-cage, the RMSD of the backbone atoms of 

residues 3-18 from the native structure as determined by NMR (model 1 of PDB code 1L2Y) 

[72] was calculated.  An RMSD cutoff of 2.5 Å was used to define the native state of trp-cage.  

The choices of RMSD values used in this analysis for trpzip2 and trpcage have previously been 

shown to be effective in producing a description of the folding that agrees with experiment 

[144,156,158]. 

Using these cutoffs, the time evolution of the average fraction of native content was 

determined for each parameter set for each system.  Error bounds on the precision of this 

measurement were calculated by treating each set of 48 trajectories as two independent sets of 24 

trajectories.  For both systems, the stability of each SGLD parameter set relative to LD was 
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quantified by calculating the value of ΔG using the ratio of the average population of native 

structure in the SGLD to the average population of native structure from the REMD trajectory at 

300K.  For trpzip2 and trp-cage, melting curves were generated by calculating, across each of the 

48 LD trajectories and for each of the REMD temperature trajectories, the average population of 

native structure for each simulated temperature.  The fraction of native population as a function 

of time was calculated by averaging the native population at each time point across the 48 LD 

runs using the criterion of RMSD to the native structure.   

To determine the first passage time of folding of trpzip2, the first time step in each of the 

48 trajectories at which the instantaneous backbone RMSD for residues 2-11 fell below 1.7 Å 

was extracted.  For trp-cage, the RMSD cutoff of 2.5 Å on residues 3-18 was used.  For both 

systems, the distribution of the first passage times of folding for the 48 runs was fit to single and 

double-exponential equations in order to quantify the relaxation time.  In order to determine 

unfolding rates of trpzip2, first passage times out of the folded basin were extracted when the 

backbone RMSD of residues 2-11 rose above 3.0 Å, subsequent to the first folding event.  For 

trp-cage, a cutoff of 6.0 Å for residues 3-18 was used to determine the rate of unfolding, 

subsequent to the first folding event.  The use of these cutoffs ensures that structures have fully 

unfolded, and are not fluctuating around the native conformation.   

In order to quantify the rate and diversity of structural sampling, cluster analysis was 

performed on the backbone of residues 2-11 of trpzip2 with a cutoff of 1.7 Å using MOIL-View 

[159].  All 48 trajectories for each temperature or SGLD parameter set were combined, and 

clusters were formed with the bottom-up approach.  Using this algorithm, each structure is 

initially assigned to its own cluster.  RMSD values between all pairs of clusters are calculated, 

and the cluster pair with the lowest RMSD is merged into a single cluster.  This procedure is 
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repeated until the remaining pair of clusters has an RMSD that is less than that of the similarity 

cutoff.  The population of each cluster is then determined.  

Multi-dimensional population histograms were used to obtain the free energy as a 

function of the radius of gyration and the backbone RMSD to the native structure.  The free 

energy values obtained by this analysis were calculated relative to the most populated histogram 

bin.  Potentials of mean force were then plotted in order to visualize the areas of the 

conformational landscape that were explored in each of the simulations. 

For the helix K19, DSSP [160] (as implemented in the ptraj module of AMBER) was 

used to quantify the fractional helicity of each residue in the peptide.  The average helicity across 

the non-terminal residues of the peptide was calculated, and the error in the precision of this 

measurement was determined by treating the set of 48 trajectories as two independent sets of 24 

trajectories.  The average fractional helicity across all 48 trajectories was calculated at each time 

step and subsequently plotted as a function of time.   

3.3. Results and Discussion 

3.3.1 Langevin Dynamics Simulations of Trpzip2 and Trp-cage 

Independent 100 ns Langevin dynamics simulations were performed on trpzip2 at each of 

the following temperatures: 300 K, 325 K, 350 K, 363 K, and 375 K.  Forty-eight trajectories 

were obtained for each of the five temperatures, for a total of 24 µs simulation time.  The 

thermodynamic stability, first passage time, folding rate constant, and rate of structural sampling 

were determined for the set of trajectories at each temperature.  Because 100 ns is too short a 

simulation time to converge the folding thermodynamics at low temperature using LD (Figure 

3.1), the thermodynamic stability of the SGLD and LD simulations was compared to converged 

data from a replica exchange simulation of trpzip2 that employed the same parameters as those 
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used in the LD simulations (Table 3.3).  The data obtained from the REMD simulations thus 

serves as a reference against which the thermodynamic stability of the SGLD simulations may be 

compared, while data from the LD runs serve as the benchmark in determining the kinetic 

efficiency of the SGLD simulations.   

 

Figure 3.1: Time-dependent average fraction native of the 48 trajectories for 100 ns LD simulations of trpzip2 at 

temperatures ranging from 300-375 K.  
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Table 3.3:  Thermodynamic and kinetic data from REMD and LD simulations of trpzip2.  Column 2 lists the fraction 

of native structure obtained for each temperature trajectory at the end of the 100 ns reference REMD simulation.  

For the 100 ns LD simulations, column 4 lists the average fraction of the 48 simulations that are in the native state 

during the 100 ns simulation time, with their associated error bounds.  Column 5 is the value of ΔG for each of the 

LD simulations versus the REMD simulation at 300K.  Columns 6 and 7 are the relaxation times of folding and 

unfolding obtained from a single-exponential fit of first passage times of folding and for escape from the native 

basin, respectively.  Column 8 lists the number of clusters found by each set of trajectories at the end of the 100 ns 

LD simulation. 

Parameter 

Set 

Fraction 

Folded  

Parameter 

Set 

Fraction 

Folded  

ΔG 

(kcal/mol) 

Folding 

trelax (ns) 

Unfolding 

trelax (ns)  

Number of 

Clusters 

REMD 

300K 99% LD 300K 55±3% 0.4 75.4 n/a 395 

REMD 

327.5K 87% LD 325K 71±4% 0.2 31.4 37.6 482 

REMD 

350K 55% LD 350K 46±2% 0.5 16.2 16.8 792 

REMD 

360.5K 34% LD 363K 22±1% 1.1 10.6 3.9 1192 

REMD 

373K 17% LD 375K 10±1% 1.7 11.3 2.3 1386 

 

First passage times for folding were fit to a single-exponential equation in order to 

estimate the relaxation times of folding, and Table 3.3 lists the relaxation times and pre-

exponential factors obtained from the fit.  The relaxation time of folding is seen to decrease by a 

factor of approximately 7 as the temperature increases from 300 K-363 K.  The relaxation time 

increases slightly from 363 K to 375 K; this non-Arrhenius behavior of the system at higher 

temperatures is likely due to the entropic barrier to folding caused by an increase in the number 

of states available to the system [161].  Table 3.3 also lists the relaxation time of unfolding out of 

the native basin, which is seen to decrease with temperature, from 37.6 ns at 325 K to 2.3 ns at 

375 K.  A relaxation time of unfolding for the 100 ns LD simulation at 300 K was not calculated 

because trajectories that do fold at that temperature tend to become trapped, and do not exhibit a 

subsequent unfolding transition; at 300 K, the relaxation time for unfolding is longer than the 
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length of the simulation.  At temperatures of 363 K and 375 K, the relaxation time of unfolding 

is faster than either of the two phases of folding, which results in relatively low populations of 

folded structures. 

The extent and rate of sampling of structures was determined using cluster analysis, 

which has been established as an effective method of quantifying the convergence of 

conformational diversity within a trajectory [162].  By determining the total number of clusters 

sampled over the course of each simulation, we may compare the extent to which each of the 

simulations sampled diverse structures on the energy landscape.  Table 3.3 lists the number of 

clusters sampled in each of the LD simulations, and Figure 3.2 shows the rate at which new 

clusters were found for each of the LD trajectories of trpzip2.  The number of clusters is seen to 

increase as the temperature of the simulation increases, from 395 clusters at 300 K to 1386 

clusters at 375 K.  Sampling above the melting point of the peptide appears to increase the 

number of conformations that are accessible to the peptide during the timescale of the 

simulation. 
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Figure 3.2: Number of clusters identified versus time for 100 ns LD simulations of trpzip2. 

As with trpzip2, reference data for the trp-cage SGLD simulations was obtained using 

standard LD and REMD simulations.  The data obtained from the LD runs served as the 

benchmark in determining the kinetic efficiency of the SGLD simulations, while that obtained 

from the REMD simulations served as a benchmark against which the thermodynamic stability 

of the SGLD simulations could be compared.  Independent 100 ns Langevin dynamics 

simulations were performed on trp-cage at each of the following temperatures: 250 K, 285 K, 

300 K, 320 K, and 355 K.  Forty-eight trajectories were obtained for each of the five 

temperatures, for a total of 24 µs simulation time.  As with the trpzip2 runs, the thermodynamic 

stability of the SGLD and LD simulations of trp-cage was compared to converged data from 

REMD simulations (Table 3.4) due to the inability of the 100 ns LD simulations to produce 

accurate ensembles (see Figure 3.3).  Table 3.4 also contains the kinetic data for trp-cage, which 

is compared against the standard LD simulations.  The relaxation time of folding is seen to 
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decrease by a factor of approximately 10 as the temperature is increased from 250 K to 285 K.  

Increasing the temperature from 285 K to 355 K results in a further decrease in the folding 

relaxation time by a factor of approximately three.  The relaxation time of unfolding was not 

obtained for the LD simulations at 250 K or 285 K, as trajectories at those temperatures which 

underwent folding at some point in the 100 ns of simulation time did not subsequently unfold.  

The relaxation time of unfolding at the higher temperatures is seen to decrease by a factor of 

approximately 40 as the temperature is increased from 300 K to 355 K.  The relaxation time of 

unfolding is approximately seven times faster than that of folding, which contributes to the lower 

fraction of native population at high temperature. 

Table 3.4:  Thermodynamic and kinetic data from REMD and LD simulations of trp-cage.  Column 2 lists the 

average fraction of native structure obtained for each temperature trajectory over the 100 ns reference REMD 

simulation.  For the 100 ns LD simulations, column 4 lists the average fraction of the 48 simulations that are in the 

native state during the 100 ns simulation time, with their associated error bounds.  Column 5 is the value of ΔG for 

each of the LD simulations versus the REMD simulation at 300K.  Columns 6 and 7 are the relaxation times of 

folding and unfolding obtained from a single-exponential fit of first passage times of folding and for escape from the 

native basin, respectively.  Column 8 lists the number of clusters found by each set of trajectories at the end of the 

100 ns LD simulation. 

Parameter 

Set 

Fraction 

Folded 

Parameter 

Set 

Fraction 

Folded 

ΔG 

(kcal/mol) 

Folding 

trelax (ns) 

Unfolding 

trelax (ns) 

Number of 

Clusters 

REMD 

251.5K 85% LD 250K 23±2% 0.4 129.1 n/a 216 

REMD 

282.9K 73% LD 285K 58±3% 0.01 13.4 n/a 299 

REMD 

300K 60% LD 300K 38±4% 0.3 13.9 81.2 622 

REMD 

318.2K 44% LD 320K 46±5% 0.2 6.0 12.8 1068 

REMD 

357.9K 9.7% LD 355K 11±3% 1.3 4.3 2.0 3156 
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Figure 3.3: Time-dependent average fraction native of the 48 trajectories for 100 ns LD simulations of trp-cage at 

temperatures ranging from 250-355 K.   

 

By determining the total number of clusters sampled over the course of each simulation, 

as well as the rate at which new clusters were sampled, we may compare the efficiency with 

which each of the simulations sampled diverse structures on the energy landscape.  Table 3.4 

lists the number of clusters sampled in each of the LD simulations of trp-cage, and Figure 3.4 

shows the rate at which new clusters were sampled.  The number of clusters sampled, as well as 

the rate of sampling of new clusters, are both seen to increase with temperature.  The LD 

simulations at 250 K and 285 K sample the smallest number of clusters, with 216 and 299 

clusters found, respectively.  Trajectories at 300 K sample 622 clusters, those at 320 K also 

sample 1068 clusters, and those at 355 K sample 3156 clusters.  As seen with trpzip2, sampling 

above the melting point of the peptide appears to increase the number of conformations that are 

accessible to the peptide during the time scale of the simulation. 
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Figure 3.4: Number of clusters identified versus time for 100 ns LD simulations of trp-cage. 

 

3.3.2 Self-guided Langevin Dynamics Simulations of Trpzip2 and Trp-cage 

The standard REMD and LD simulations described in the previous section serve as a 

benchmark against which we can estimate the effective thermodynamic temperature of an SGLD 

simulation and judge the efficiency of performing an SGLD simulation versus performing a 

standard LD or REMD simulation at high temperature.  In this section, we describe the results 

obtained from these SGLD simulations.  We generated 48 independent 200 ns SGLD simulations 

of trpzip2 and trp-cage at 300 K for each of the thirteen sets of averaging times and guiding 

factors listed in Table 3.1, for a total of 124.8 μs simulation time per peptide.  For each 

parameter set, we determined the thermodynamic stability and free energy surface, first passage 

time distribution, relaxation times of folding and unfolding, and time dependence of structural 

sampling.  Through comparison of these results with those of the reference REMD and LD 

simulations presented above, we may identify which, if any, of the SGLD parameter sets are 
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effective in accelerating the kinetics of folding while maintaining reasonably accurate 

thermodynamics.   

Table 3.5 includes, for each SGLD parameter set, the averaging time, guiding factor, 

average fraction of trajectories in the folded state during the last 40 ns of the 200 ns simulation of 

trpzip2, and the fraction of trajectories that reach the native state at least once over the course of 

the simulation.  Table 3.5 also includes the relaxation times of folding and unfolding obtained 

from the single-exponential fits of the first passage time data, and a comparison of these 

relaxation times against the reference LD simulation at 300 K. 

Table 3.5: Thermodynamic and kinetic data from 200 ns SGLD simulations of trpzip2.  Column 4 lists the average 

fraction of native structure obtained for each SGLD parameter set, with their associated error bounds.  Column 5 is 

the value of ΔG for each of the SGLD parameter sets relative to the REMD reference trajectory at 300K.  Column 6 

lists the relaxation time of folding obtained from the single-exponential fit of first passage times, and column 7 lists 

the relaxation time for escape from the native basin.  Column 8 is the value of the relaxation time of folding for each 

LD parameter set divided by that for the SGLD simulation at 300K (speedup), and column 9 gives the number of 

clusters found by each parameter set at the end of the 200 ns simulation time. 

  

Parameter 

Set 

Averaging 

Time (ps)   

Guiding 

Factor 

Fraction 

Folded  

ΔG (kcal/ 

mol) 

Folding 

trelax (ns) 

Unfolding 

trelax (ns) 

SGLD 

Speedup 

Number of 

Clusters 

SGLD 1 0.2 1.0 81±6% 0.1 14.9 61.8 5.1 471 

SGLD 2 1.0 1.0 82±3% 0.1 39.9 69.4 1.9 364 

SGLD 3 2.0 1.0 76±7% 0.2 26.9 46.3 2.8 374 

SGLD 4 10.0 1.0 82±5% 0.1 33.6 89.9 2.2 333 

SGLD 1a 0.2 5.0 1±0% n/a 12.6 0.5 6.0 3340 

SGLD 2a 1.0 5.0 70±3% 0.2 13.7 43.4 5.5 851 

SGLD 3a 2.0 5.0 81±2% 0.1 23.6 67.9 3.2 486 

SGLD 4a 10.0 5.0 82±2% 0.1 32.0 >200 2.4 389 

SGLD 1b 0.2 10.0 0±0% n/a 4.1 0.2 18.4 4324 

SGLD 2b 1.0 10.0 36±2% 0.6 10.4 19.4 7.3 1764 

SGLD 3b 2.0 10.0 84±6% 0.1 13.5 62.0 5.6 728 

SGLD 4b 10.0 10.0 77±4% 0.2 34.2 44.7 2.2 429 

SGLD 3c 2.0 20.0 77±4% 0.2 14.0 41.0 5.4 1386 
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Examining Table 3.5, it is evident that with all tested averaging times, the use of a 

guiding factor of 1.0 (parameter sets SGLD 1, SGLD 2, SGLD 3, and SGLD 4) with trpzip2 

results in relatively large populations of native structure, ranging from approximately 76% to 

approximately 82%.  These populations are significantly larger than that obtained using LD at 

300 K, which achieves a population of approximately 55% but is unconverged.  The fraction of 

folded structures is less than that obtained from the converged REMD trajectory at 300 K, which 

achieves a population of 99% native structure.  A comparison of the relaxation times of folding 

and unfolding for each of these parameter sets to those of the reference LD simulation at 300 K 

allows for a determination of the kinetically efficient SGLD parameter sets.  All trajectories with 

a guiding factor of 1.0 fold more quickly than the LD simulation.  Parameter sets SGLD 1, 

SGLD 2, SGLD 3, and SGLD 4 exhibit folding rates that are 5.1, 1.9, 2.8, and 2.2 times faster 

than the LD simulation at 300 K, respectively.  These results indicate that this relatively small 

guiding factor is successful at both accelerating folding and maintaining populations of native 

structures when the averaging time ranges from 0.2 ps to 10.0 ps.  Among these parameter sets, 

SGLD 1 has the largest kinetic rate acceleration versus the LD reference simulation (5.1 times 

that of LD at 300 K) and also has a relatively long relaxation time of unfolding, which results in 

its large fraction of native population.  

With a larger guiding factor of 5.0 (SGLD 1a, 2a, 3a, and 4a), the populations of native 

structures, as well as the relaxation times of folding and unfolding, are seen to decrease as the 

averaging time increases from 0.2 ps to 10.0 ps.  With the exception of parameter set SGLD 1a, 

the fraction of folded structures obtained by these parameter sets is approximately equal to those 

obtained by the set with a guiding factor of 1.0 (SGLD 1, 2, 3, and 4), while the folding rates are 

slightly faster than these sets.  Parameter sets SGLD 3a and 4a have the largest populations of 
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native structure (approximately 81%), however SGLD 3a has the fastest relaxation time of 

folding.  The slow relaxation time of unfolding for SGLD 3a likely contributes to the relatively 

large population of native structure that is obtained using this parameter set.     

Increasing the guiding factor to 10.0, the populations of folded structures range from 0% 

to approximately 84% as the averaging time is increased from 0.2 ps to 2.0 ps.  Increasing the 

averaging time from 2.0 ps to 10.0 ps leads to a decrease in folded population to approximately 

77%.  Parameter set SGLD 3b is the most kinetically efficient and thermodynamically stable, 

achieving a fraction of native structure of approximately 84%, which is comparable to the 

REMD simulation at 327.5 K.  The folding first passage time of this parameter set is 13.5 ns, 

which is comparable to that of an LD simulation run between 350K and 363K.  Parameter set 

SGLD 4b also exhibits thermodynamic stability, but is less kinetically efficient than SGLD 1, 

SGLD 3, SGLD 3a, or SGLD 3b.   

From these results, we may conclude that for trpzip2, the application of SGLD is most 

successful at maintaining thermodynamic stability and accelerating folding when a relatively low 

guiding factor of 1.0 and short averaging time of 0.2 ps is used (SGLD 1).  Additionally, an 

averaging time of 2.0 ps used with all tested guiding factors (SGLD 3, SGLD 3a, SGLD 3b) 

results in populations of native structure that are the most stable and the fastest to fold of all the 

SGLD parameter sets that were tested.  In order to test whether the trends of accelerated and 

stable folding would continue as the guiding factor was increased to 20.0 with an averaging time 

of 2.0 ps, simulation of an additional parameter set (SGLD 3c) was also performed.  Although 

the first passage time of folding remained approximately constant compared to that of SGLD 3b, 

the fraction of native structures decreased to approximately 77% due to faster rates of unfolding.   
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It is notable that averaging times of 1.0 and 2.0 ps give rather different results for both 

the thermodynamic and kinetic properties when quantities obtained with the same guiding factor 

are compared.  These differences underscore the sensitivity of the method to the combination of 

averaging time and guiding factor used.  It is also significant that averaging times larger than 1.0 

ps have not been used in prior SGLD studies, but our work indicates that an averaging time of 

2.0 ps is beneficial in enhancing the kinetic rate of trpzip2, as well as maintaining its 

thermodynamic stability.   

 In order to quantify the extent to which each SGLD parameter set sampled diverse 

conformations during the 100 ns simulation, the number of structural clusters and the rate at 

which new clusters were sampled were determined.  Table 3.5 lists the number of clusters 

sampled in each of the SGLD simulations.  For each averaging time, the number of distinct 

clusters found during the simulation increases as the guiding factor increases, which is a sensible 

result given that increasing the guiding factor is predicted to result in increased sampling [125].  

The use of a short averaging time results in a larger number of clusters, and for a single guiding 

factor, the number of clusters decreases as the averaging time increases.  Increasing the 

averaging time is predicted to enhance slower motions of the peptide [125], so it is sensible that 

the extent of sampling would decrease as the enhanced motions become slower.   

Figure 3.5 shows the rate at which new clusters were identified by each of the SGLD 

parameter sets, and includes the data from the LD run at 300 K as a reference point.  Trajectories 

with small guiding factors and long averaging times are among the slowest to sample new 

structures, while those with large guiding factors and short averaging times generally sample at 

the fastest rate.  With the exception of parameter set SGLD 4, which samples structures at a rate 

that is approximately equal to that of the LD simulation at 300 K, the use of SGLD was able to 
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accelerate the rate of sampling of trpzip2 with all tested combinations of guiding factors and 

averaging times relative to the reference 300 K LD simulation.  Parameter sets SGLD 3a and 

SGLD 1 sampled new structures at a rate that is approximately equal to that of the LD 

simulations run at 325 K.  SGLD 3b and SGLD 2a sampled new structures at a rate that is 

approximately equal to that of the LD simulations at 350 K.  Use of parameter sets SGLD 1b, 

SGLD 1a, or SGLD 2b resulted in sampling rates that were higher than those of any of the LD 

reference simulations, including those run at 375 K.   

 

Figure 3.5: Number of clusters vs. time for 100 ns SGLD simulations of trpzip2. 

 

Having quantified the effect of the use of SGLD on the rate of sampling, we now 

examine whether accelerated folding occurs at the cost of obtaining correct thermodynamic 

ensembles.  In order to examine the effect of the use of SGLD on the energy surface of trpzip2, 

we have plotted the free energy as a function of two order parameters: the radius of gyration of 

the hydrophobic cluster of four tryptophan residues, and the RMSD of the backbone residues to 
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the native structure.  PMFs were also obtained for each of the REMD temperature trajectories, 

and comparisons may therefore be made between the SGLD ensembles and the well-converged 

REMD ensembles.  As an example, parameter sets SGLD 1, SGLD 1a, and SGLD 1b are shown 

in Figure 3.6.  As discussed above, trpzip2 was seen to rapidly fold to a large population 

(approximately 81%) of native structure using SGLD 1.  The PMF obtained for the SGLD 1 

trajectories resembles that of the REMD surface from the replica run at 327 K, with a compact 

minimum centered on a radius of gyration of approximately 6.5 Å and a backbone RMSD of 

0.75 Å.  The PMF obtained using SGLD 1 contains a higher proportion of extended structures 

than those in the REMD simulation, although this population of extended structures is small.  

The use of parameter sets SGLD 1a and SGLD 1b resulted in zero population of folded 

structures.  The surfaces obtained from these parameter sets are comparable to that of the REMD 

trajectory at 465 K, with its loss of distinguishable minima.  It is apparent from the surfaces that 

the ensembles obtained from running SGLD simulations at 300 K with a short averaging time 

and large guiding factor are comparable to those obtained from running LD simulations at 

temperatures that are much higher than 300 K. 
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Figure 3.6: Comparison of free energy surfaces obtained for SGLD simulations of trpzip2 with averaging time of 0.2 

ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD simulations at (b) 327 K, (d) 465 K, and (f) 465 

K.  Energies are in units of kcal/mol. 
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Figure 3.7 is a comparison of the free energy surfaces obtained for simulations SGLD 3, 

SGLD 3a, and SGLD 3b with the comparable surface from the REMD simulations, that of the 

327 K temperature trajectory.  Each of these SGLD parameter sets attained stable 

thermodynamic populations at a faster rate than the LD simulation at 300 K.  The PMFs for these 

parameter sets each have a compact minimum centered on a radius of gyration of approximately 

6.5 Å and a backbone RMSD of 0.75 Å, which suggests the convergence of the ensemble to the 

native state.  Surfaces obtained from REMD at 327.5K, as well as those from SGLD with a 

guiding factor of 1.0, exhibit two distinct ensembles of misfolded structures: one with a radius of 

gyration of approximately 6.0 Å and backbone RMSD ranging from approximately 2-3 Å, and a 

second with a radius of gyration of approximately 7.0 Å and a backbone RMSD of 

approximately 5.0 Å.  Increasing the guiding factor removes the latter population of misfolded 

structures, although it appears that the former population of misfolded structures increases, and 

structures become more extended.  The use of parameter sets SGLD 3, SGLD 3a, and SGLD 3b 

with trpzip2 resulted in rates of folding that were approximately equal to that of the standard LD 

simulation at 327 K.  From these surfaces, we may conclude that the populations of folded 

structures that were obtained in these simulations also resembled those obtained from the LD 

simulation at 327 K.  These parameter sets are more kinetically efficient than the standard LD 

simulation at 300 K, but are able to maintain a stable population of folded structures resembling 

that found in a relatively low-temperature LD simulation.  
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Figure 3.7: Comparison of free energy surfaces obtained for SGLD simulations of trpzip2 with averaging time of 2.0 

ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD simulations at (b) 327 K, (d) 327 K, and (f) 327 

K.  Energies are in units of kcal/mol. 
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 Table 3.6 includes the thermodynamic and kinetic data obtained in SGLD simulations of 

trp-cage.  Reviewing the results, it is evident that the largest populations of native structure are 

obtained when the lowest guiding factor of 1.0 is used with averaging times of 1.0 ps, 2.0 ps, and 

10.0 ps (SGLD 2, SGLD 3, and SGLD 4).  The use of these parameter sets results in populations 

of native structure (44%, 40%, and 48%) that are approximately equal to that obtained from the 

REMD trajectory at 318.2K (44%).  Additionally, all three of these parameter sets have 

relaxation times of folding (6.4 ns, 9.7 ns, and 7.1 ns) that are faster than the reference LD 

simulation at 300 K, which has a relaxation time of folding of 13.9 ns.  Relative to the LD 

simulation at 300 K, the use of these parameter sets result in speedup factors of 1.9, 2.8, and 2.2, 

respectively.   

With the larger guiding factors of 5.0 and 10.0, an averaging time of 10.0 ps (SGLD 4a 

and SGLD 4b) is necessary in order to obtain populations of folded structures that are 

approximately 30%, but these populations are lower than those obtained with a guiding factor of 

1.0, which are approximately 44%.  The use of guiding factors of 5.0 and 10.0 with averaging 

times ranging between 0.2 ps and 10.0 ps is unsuccessful in SGLD simulations of trp-cage; 

although the use of these guiding factors exhibit an acceleration of the folding rate that is equal 

to 1.8 and 1.4 times those of the LD simulation of at 300 K, these simulations do not produce 

stable structures that are maintained over the course of the simulation.  These results are in 

contrast to those obtained with trpzip2, which exhibited stable, accelerated folding using guiding 

factors of 5.0 and 10.0 with an averaging time of 2.0 ps (SGLD 3a and SGLD 3b).   
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Table 3.6: Thermodynamic and kinetic data from 200 ns SGLD simulations of trp-cage.  Column 4 lists the average 

fraction of native structure obtained for each SGLD parameter set, with their associated error bounds.  Column 5 is 

the value of ΔG for each of the SGLD parameter sets versus the REMD reference trajectory at 300 K.  Column 6 

lists the relaxation time of folding obtained from the single-exponential fit of first passage times, and column 7 lists 

the relaxation time for escape from the native basin.  Column 8 is the value of the relaxation time of folding for each 

LD parameter set divided by that for the SGLD simulation at 300 K (speedup), and column 9 gives the number of 

clusters found by each parameter set at the end of the 200 ns simulation time. 

  

Parameter 

Set 

Averaging 

Time (ps)   

Guiding 

Factor 

Fraction 

Folded  

ΔG 

(kcal/mol) 

Folding 

trelax (ns) 

Unfolding 

trelax (ns) 

SGLD 

Speedup 

Number of 

Clusters 

SGLD 1 0.2 1.0 15±1% 0.8 3.3 2.9 4.2 2479 

SGLD 2 1.0 1.0 44±2 0.2 6.4 14.0 2.2 1059 

SGLD 3 2.0 1.0 40±3% 0.3 9.7 14.0 1.4 990 

SGLD 4 10.0 1.0 48±3% 0.1 7.1 30.1 2.0 588 

SGLD 1a 0.2 5.0 0±0% 4.4 35.9 0.1 0.4 6014 

SGLD 2a 1.0 5.0 17±1% 0.8 3.3 0.5 4.2 2766 

SGLD 3a 2.0 5.0 7.9±1% 1.2 3.5 1.0 4.0 3660 

SGLD 4a 10.0 5.0 30±7% 0.4 7.8 4.1 1.8 1542 

SGLD 1b 0.2 10.0 0±0% 6.1 41.4 0.1 0.3 5842 

SGLD 2b 1.0 10.0 9.6±2% 1.1 12.5 0.2 1.1 3693 

SGLD 3b 2.0 10.0 1.6±0% 2.2 6.0 0.4 2.3 4996 

SGLD 4b 10.0 10.0 30±7% 0.7 9.7 2.0 1.4 2441 

SGLD 3c 2.0 20.0 0.3±0% 3.2 15.5 0.1 0.9 5049 

 

The number of structural clusters identified for each SGLD parameter set is given in Table 

3.6.  As seen in the results for trpzip2, for each averaging time, the number of distinct clusters 

found during the simulation increases as the guiding factor increases.  For each guiding factor, 

the use of a short averaging time results in a larger number of clusters.  With the exceptions of 

parameter sets SGLD 3a and SGLD 3b, the number of clusters decreases as the averaging time 

increases.  Figure 3.8 shows the rate at which new clusters of trp-cage structures were identified 

by each of the SGLD parameter sets, with the LD simulation run at 300 K shown as reference.  

Trajectories with small guiding factors and long averaging times were among the slowest to 

sample new structures, while those with large guiding factors and short averaging times 
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generally sampled at the fastest rate.  With the exception of parameter set SGLD 4, the use of 

SGLD with all tested combinations of guiding factors and averaging times was able to accelerate 

the rate of sampling of trpcage relative to that of the LD simulation at 300 K.  The LD 

simulations run at 325 K sampled new structures at a rate that is approximately equal to that of 

SGLD 4.  The LD simulation at 350 K samples at a rate that is between those of SGLD 2a and 

SGLD 3b.  Parameter sets SGLD 1a, SGLD 1b, SGLD 3c, SGLD 3b, SGLD 3a, and SGLD 2b 

sample new structures more efficiently than the simulations run at 350 K using LD. 

 

Figure 3.8: Number of clusters vs. time for 100 ns SGLD simulations of trp-cage. 

 

PMFs comparing the ensembles obtained in the SGLD simulations to the well-converged 

SGLD ensembles are shown in Figures 3.9 and 3.10.  As discussed above, SGLD 1 exhibited a 

native population of approximately 15% after 200 ns of simulation, while neither SGLD 1a nor 

SGLD 1b were able to maintain any native population.  The PMF obtained for the SGLD 1 

trajectories resembles that of the REMD surface from the replica run at 357.9 K, with a broad 
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minimum centered on a radius of gyration of approximately 8 Å and a backbone RMSD of 3.5 

Å.  The surfaces obtained with SGLD 1a and SGLD 1b are comparable to that of the REMD 

trajectory at 452.8 K, which exhibits an extremely broad minimum with backbone RMSD 

ranging from approximately 5-9 Å and a radius of gyration that ranges from approximately 9-13 

Å.  

 

 

 

 

 



75 

 

 

Figure 3.9: Comparison of free energy surfaces obtained for SGLD simulations of trp-cage with averaging time of 

0.2 ps and guiding factors of (a) 1.0, (c) 5.0, and (e) 10.0 with REMD simulations at (b) 357.9 K, (d) 452.8 K, and 

(f) 452.8 K.  Energies are in units of kcal/mol. 
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Figure 3.10: Comparison of free energy surfaces obtained for SGLD simulations of trp-cage with guiding factor of 

1.0 and averaging times of (a) 1.0 ps, (c) 2.0 ps, and (e) 10.0 ps with REMD simulations at (b) 318.2 K, (d) 318.2 K, 

and (f) 300 K.  Energies are in units of kcal/mol. 
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 Figure 3.10 is a comparison of the free energy surfaces obtained for simulations SGLD 

2, SGLD 3, and SGLD 4 of trp-cage with comparable surfaces from the REMD simulations.  The 

PMFs for parameter sets SGLD 2 and SGLD 3 each have a compact minimum centered on a 

radius of gyration of approximately 7 Å and a backbone RMSD of 1.75 Å, which suggests that 

the ensemble has populated the native state, and resembles the surface obtained for the REMD 

simulation run at 318.2 K.  The surface obtained for SGLD 4 comprises structures that are 

slightly more compact that those of SGLD 2 and SGLD 3, and resembles the REMD trajectory 

run at 300 K, with a minimum centered on a radius of gyration of approximately 7 Å and a 

backbone RMSD of 1.5 Å.  

3.3.3 Discussion: Comparison of SGLD with Trpzip2 and Trp-cage 

Looking at the results for trpzip2 and trp-cage together, we may generalize that peptides of 

similar size but different topologies require different combinations of guiding factors and 

averaging times in order to optimize folding rates and stability.  Stable, accelerated folding of 

trpzip2 required the use of parameter sets with a guiding factor of 1.0 and an averaging time of 

0.2 ps, or an averaging time of 2.0 ps with guiding factors of 1.0, 5,0, and 10.0.  The use of 

parameter sets SGLD 1, SGLD 3, SGLD 3a, and SGLD 3b resulted in ensembles of structures 

that exhibited thermodynamic stability comparable to REMD simulations run at approximately 

327.5 K, with kinetic rates of folding that were approximately 3-5 times faster than LD 

simulations run at 300 K.  For trp-cage, the simulations run with a guiding factor of 1.0 and 

averaging times of 1.0 ps, 2.0 ps, and 10.0 ps (SGLD 2, SGLD 3, and SGLD 4) were the most 

thermodynamically stable and kinetically efficient.  The use of these parameters resulted in 

ensembles of structures with native populations that were approximately equal to that of the 

REMD simulation run at 318.2 K, with relaxation times of folding that were approximately 5-10 
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times as fast as that obtained using LD at 300 K.  Even using the most successful of the SGLD 

parameter sets that were tested, neither trpzip nor trpcage was able to achieve the fraction of 

native content that was observed in the REMD ensembles at 300K.     

3.3.4 Alpha-helix K19: Langevin Dynamics and Self-guided Langevin Dynamics 

Simulations 

The results obtained from our SGLD simulations indicate that certain parameter sets are 

reasonably effective in accelerating the folding of trpzip2 and trp-cage while maintaining 

populations of folded states, whereas others are not, and some are less effective than using LD 

and result in unpredictable and extreme distortions in the free energy landscape.  In order to 

further test the transferability of parameter sets between peptides of similar size but differing 

structures, three of the most effective sets of parameters from the SGLD simulations of trpzip2 

(SGLD 3, SGLD 3a, and SGLD 3b) were applied to the α-helix K19.  These SGLD parameters 

were chosen because the SGLD simulations of trpzip2 using these parameters were more 

successful at accelerating folding while maintaining stable populations of native structures 

relative to the converged REMD ensemble.  In addition, SGLD 3 was successful in its 

application to trp-cage and thus exhibited transferability between two peptide systems of 

differing topologies.   The averaging time for these parameter sets was 2.0 ps, and the guiding 

factors were 1.0, 5.0, and 10.0, respectively (SGLD 3, SGLD 3a, and SGLD 3b).  In addition, 

two sets of simulations were run using guiding factors less than 1.0 when it became apparent that 

the folded ensembles of K19 were most stable with a relatively small guiding factor.  Parameter 

set SGLD 3c had an averaging time of 2.0 ps and a guiding factor of 0.25, while parameter set 

SGLD 3d had an averaging time of 2.0 ps and a guiding factor of 0.5.  Forty-eight trajectories of 

100 ns each were obtained for each of the five parameter sets, for a total of 24 µs simulation 
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time.  Two standard Langevin dynamics simulations serving as benchmarks were performed at 

280 K and 300 K, with forty-eight 100 ns trajectories obtained at each temperature, for a total of 

9.6 µs simulation time.   

 For all SGLD and LD runs, the average fractional helicity of each residue over all 48 

trajectories was calculated using DSSP [160].  The acetyl and amide groups at the termini of the 

peptide contained no helical content and are therefore not included in the analysis.  The resulting 

values of the percent helical content per residue are compared in Figure 3.11, and the average 

values of the fractional helicity per residue across residues 4-16 of the peptide are given in Table 

3.7.  This analysis follows that used in a previous computational study to determine the 

temperature dependence of the helical propensity of residues in K19 [154]. 

 

Figure 3.11: Helical content per residue of the peptide K19 obtained from LD simulations at 280 K and 300 K and 

SGLD simulations at 300 K with an averaging time of 2.0 ps.  
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Table 3.7:  Thermodynamic and kinetic data from 100 ns LD and SGLD simulations of K19.  Column 4 lists the 

values of the average helicity across residues 4-16 of the peptide, with their associated error bounds.  Column 5 is 

the value of ΔG for all simulations versus the LD reference trajectory at 300 K. Column 6 lists the relative percent 

decrease in helicity for each parameter set versus the LD simulation at 300 K. Column 7 lists the folding time of the 

peptide, estimated from the fractional helicity vs. time. 

 

Parameter 

Set 

Averaging Time 

(ps) 

Guiding 

Factor 

Average 

Helicity 

ΔG 

(kcal/mol) 

Relative Decrease in 

Helicity  

Folding 

Rate (ns) 

LD 280K n/a n/a 39.3±0.3% -0.2 n/a 5.0 

LD 300K n/a n/a 30.7±0.3% 0 n/a 3.0 

SGLD 3 2.0 1.0 24.6±0.2% 0.1 20% 3.0 

SGLD 3a 2.0 5.0 14.7±0.1% 0.4 48% 1.0 

SGLD 3b 2.0 10.0 8.9±0.1% 0.7 71% 0.5 

SGLD 3c 2.0 0.25 30.3±0.6% 0.01 1% 2.8 

SGLD 3d 2.0 0.5 29.1±1.0% 0.03 29% 2.5 

 

 All of the simulations exhibit a profile with very little helicity at the C-terminus, a rapid 

increase in helicity between residues 2 and 4, a plateau region of approximately constant helicity 

from residues 4-16, and a rapid decrease in helicity between residues 16 and 19.  The LD 

simulation at 280 K exhibits the highest fractional helicity of the simulations that were 

compared, with a maximum helical content of 41.4% at the alanine residue in position 7.  The 

LD simulation at 300 K has a maximum fractional helicity of 31.4% at alanine 7.  The termini 

exhibit a difference of approximately 5% between the helicities of their residues in the 280 K and 

300 K simulations, while residues 4-16 have an average absolute difference of approximately 

10% between the two simulations (39.3% versus 30.7%) and a relative difference of 25%. The 

absolute difference of approximately 10% in this region is supported by previous work [154] in 

which the helical propensity of residues in K19 versus temperature was calculated, and an 

absolute difference of approximately 15% was found between the helicities of all of the residues 

at 275 K and 300 K. 
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Introduction of a guiding factor less than 1.0 maintains the helical content present in the LD 

reference simulations at 300 K, which is 30.7%.  The addition of a guiding factor greater than 1.0 

results in a uniform decrease in helical content across all residues of the peptide, although the 

trend across the sequence is maintained.  The percent decreases in helicity for each SGLD 

parameter set relative to the LD control simulation at 300 K are given in Table 3.7.  Although the 

decreases in helicity appear to be large, these differences in native population correspond to 

relatively small differences in thermodynamic stability, as evidenced by the values of ΔG given 

in Table 3.7.  Average helical content at each time step was calculated over all of the 48 

trajectories in order to determine the time needed for the ensembles to reach their converged 

distribution from the linear starting structures.  

Folding rates were estimated from the time required for the fractional helicity vs. time to 

equilibrate, and are given in Table 3.7.  As shown in Figure 3.12, equilibration was reached 

within 10 ns for all parameter sets.  At 300 K, approximately 3.0 ns were needed for the starting 

structures to reach a fractional helicity of approximately 27%.  The use of SGLD resulted in 

folding rates that are equal to, or up to six times faster than, those of the LD simulations at 300 

K.  With the exception of parameter set SGLD 3, increasing the guiding factor lead to a decrease 

in the folding rate.  Parameter sets SGLD 3, SGLD 3c, and SGLD 3d exhibited folding rates that 

were approximately equal to that of the LD simulation at 300 K.  SGLD 3a and SGLD 3b 

exhibited folding rates that constitute a three-fold and six-fold increase, respectively, versus the 

LD simulation at 300 K, but the resulting ensembles exhibited the largest degree of 

thermodynamic destabilization relative to the LD simulation.  The limited improvement in the 

folding rates obtained using SGLD with K19 is likely due to the fact that the system folds rapidly 

without assistance.  One direction for future study may therefore be the use of SGLD with a 
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system such as K19 in explicit solvent.  As folding proceeds more slowly in the presence of 

explicit solvent, the effect of SGLD on the kinetics of the system will be clearer.   

 

Figure 3.12. Fractional helicity vs. time obtained from first 10 ns of 100 ns LD and SGLD simulations of helix K19.  

 

3.4 Conclusions 

The results obtained in this study indicate that simulations using self-guided Langevin 

dynamics are very sensitive to the combination of averaging time and guiding factor that is 

chosen.  Despite the enhancement in folding rate and thermodynamic stability that may be 

attained using self-guided Langevin dynamics, the optimal combination of parameters is not 

apparent before the simulation is run.  As shown in the examples above, incorrect choice of 

parameters may lead to a slowing of the rate of folding, a destabilization of the folded state of the 

system, or even the complete loss of recognizable features on the free energy landscape.  

Additionally, our systematic testing of identical parameter sets for the β-hairpin trpzip2 and the 

trp-cage miniprotein, as well as our attempt to transfer successful parameter sets from the beta-
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hairpin trpzip2 to the α-helical system K19, indicates that the choice of optimal parameters may 

need to be determined on a system-by-system basis if the systems are of similar size but different 

topology.   

Despite these drawbacks, self-guided Langevin dynamics remains a powerful and 

sensitive method by which to enhance sampling in simulations of biological systems.  In cases 

where an optimal combination of parameters has been determined through preliminary testing, a 

simulation employing SGLD can be more efficient than a Langevin dynamics simulation in its 

exploration of the conformational space available to the protein.  This effect would likely be 

more prominent in large systems, where the large number of degrees of freedom requires longer 

simulation time for the observation of conformational changes.  Additionally, the cluster analysis 

undertaken in this study indicates that SGLD simulations with large guiding factors and short 

averaging times may be employed to efficiently produce alternate structures that may be used for 

decoy screening, or as a reservoir for reservoir replica exchange molecular dynamics simulations 

if native as well as non-native structures are generated [156].  The potential utility of self-guided 

Langevin dynamics therefore warrants its continued study, particularly in its application to larger 

biomolecular systems, and systems in explicit solvent. 
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Chapter 4: Non-Boltzmann Reservoir Replica Exchange Molecular Dynamics with User-

defined Weights  

 

Abstract 

Many algorithms have been developed to enhance the conformational sampling of biomolecules 

that is achieved in Monte Carlo and molecular dynamics simulations.  One method that has 

proven to be very efficacious in enhancing sampling is the replica-exchange molecular dynamics 

algorithm (REMD), which achieves a random walk in temperature space in order to surmount 

conformational barriers in the energy landscape.  Variants of this technique have been developed 

over the years in order to increase the efficiency of REMD simulations of biomolecules.  In 

particular, approaches have been developed in which a structural reservoir is used to decouple 

the high-temperature search for structures from the exchanges and annealing which occur at 

lower temperatures.  It has been shown that the contents of this reservoir need not comprise a 

Boltzmann-weighted ensemble; any ensemble of structures may be used as long as its probability 

distribution is known.  Expanding on this method, we have developed an algorithm to further 

enhance the efficiency of reservoir REMD through the inclusion of a weight factor that relates 

the relative probabilities of the highest-temperature replica structure and the structure in the 

reservoir under exchange.  In Chapter 4, we outline attempts to apply this method to the model 

system alanine dipeptide, and discuss the results obtained using a coarse-grained model that 

considers only the potential energy of the dipeptide as a function of its dihedral angles and does 

not consider its atomistic degrees of freedom. 

 

 

 

 



85 

 

4.1 Introduction 

 As discussed in Section 2.6 of this work, conformational sampling remains one of the 

most significant current limitations in the simulation of biomolecules.  The existence of a rough 

underlying energy landscape in which local energy minima are separated by large barriers causes 

structures to become trapped in local minima, and prevents Boltzmann-weighted sampling from 

occurring within a timescale that is computationally feasible.  In order for a system to exhibit 

ergodicity, it must be able to reach any point in phase space from any initial state.  The existence 

of large energy barriers on the landscape, however, often leads to quasi-ergodocity, by which the 

system has an extremely small probability of exiting a local minimum [162].  A simulation may 

appear converged with respect to certain order parameters, but a simulation of the same system 

initiated from a different state will reveal that the entirety of conformation space was not 

explored. 

 This problem is particularly prevalent at the relatively low temperatures (~300 K) often 

used to simulate the conditions at which biological systems function, as the tendency for trapping 

generally increases as the thermal energy of the system decreases.  One method that has been 

developed to address the problem of accurate sampling at realistic temperatures is known as 

replica-exchange molecular dynamics (REMD) [126,163,164,165].  In an REMD simulation, a 

number of MD simulations of a system, each at a different temperature, are simultaneously run.  

Each independent simulation is known as a “replica,” and the temperatures at which they are run 

range from biologically relevant, experimentally accessible temperatures, such as 280-300 K, to 

higher temperatures, such as 600 K, at which the system is expected to have enough thermal 

energy to easily overcome potential energy barriers.  At a predetermined number of time steps, 

each replica attempts to exchange its structure with the replica that is adjacent to it in 
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temperature.  Whether a move is accepted or not is determined based on a Metropolis-type 

criterion [33], which considers the probability of sampling the alternative structure at the current 

temperature.  Canonical ensemble properties are thus preserved through the construction of the 

transition probability.  Further details on this method may be found in Section 4.2 below.  Due to 

the increase in computational efficiency that it affords, REMD has seen extensive application in 

protein folding studies of peptides and small proteins [148,166,167,168,169,170,171].   

 In spite of the advantages that it confers in sampling, difficulty remains in implementing 

REMD for large systems; as an extensive algorithm, its computational cost increases with the 

size of the system [172,173,174,175].  The number of replicas required in an REMD simulation 

increases with the square root of the number of degrees of freedom in the system, which limits 

the size of the systems under study as well as the length of the simulations that can be obtained 

using this method.  Another issue which limits the efficiency of REMD is that although the high-

temperature replicas allow the system to surmount energy barriers to sample conformational 

space, they do not necessarily confer any advantage in locating the native state.  The increase in 

conformational entropy at high temperature often leads to weak, or non-Arrhenius, dependence 

of the folding rate on temperature [161,176,177].  If a high-temperature replica does sample the 

native state, the exchange criterion will likely require that this structure be exchanged down to 

lower temperature, requiring that the search begin again at high temperature.  In order to obtain a 

correctly weighted ensemble, the high-temperature replica may need to sample the native state 

several times before convergence is obtained, which may require a large amount of 

computational time.  

 In order to reduce the search time required by the highest-temperature reservoir to sample 

many folding transitions, several algorithms have been developed which decouple the high-
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temperature conformational search from the low-temperature simulations [178,179,180].  The “J-

walking” method [181] was developed in order to couple a single low-temperature Monte Carlo 

(MC) simulation to a collection of structures that had been generated at higher temperature.  This 

algorithm allows the low-temperature walker to occasionally jump directly to the distribution at 

the higher temperature, thereby surmounting any energy barriers that may have separated the two 

structures.  Tandem conformational searches by the low-temperature and high-temperature 

systems were attempted with this method; however, it was found that correlation between the 

tandem walkers, as well as increased computational overhead, limited the utility of the method.  

Instead, it was found that the generation of conformations prior to any jumps yielded accurate 

results without any additional computational cost.  Other methods subsequently extended this 

algorithm, including exchanges between structures of different resolution [182,183] and from 

finite reservoirs of structures [184]. 

 Inspired by J-walking, Okur et al. [158] developed a replica-exchange molecular 

dynamics simulation scheme known as reservoir replica-exchange molecular dynamics (R-

REMD) in which a high-temperature Boltzmann-weighted collection of structures is 

independently obtained using MD and subsequently used as a reservoir for the lower-temperature 

exchange simulations (details in Section 4.2).  This method was applied to the β-hairpin trpzip2 

and the 3-stranded antiparallel β-sheet dPdP model systems in implicit solvent with a reservoir of 

10,000 structures obtained at 400 K.  This relatively high temperature was chosen because it is 

above the experimental melting temperature of each peptide, and therefore high enough to allow 

for extensive sampling of conformation space.  The use of this high temperature requires 

exchanges from the reservoir to significantly transform this ensemble in order to obtain accurate 

populations at lower temperatures.  For both peptides, this technique was shown to exhibit 
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increased speed of convergence and an accurate thermal stability profile when compared against 

standard REMD, as exchanges are made into a correctly-weighted ensemble that has already 

been generated and does not require any additional computational overhead.   

 The nature of the ensemble that is used as the reservoir, particularly the question of 

whether it needs to be Boltzmann-weighted in order for the structures to be passed to lower 

temperatures with correct probability, was the subject of a subsequent study by Roitberg et al. 

[156].  If the purpose of R-REMD is to increase the efficiency of the simulation, then the 

reservoir-generating step must not be overly time-consuming.  Because is it often difficult to 

generate a reservoir of Boltzmann-weighted structures, a variant of R-REMD was developed that 

uses a reservoir in which the structures are not Boltzmann-weighted, demonstrating that an 

arbitrary distribution of structures may be included in the reservoir given that its probability 

distribution is known.  In this formalism, trpzip2 structures were selected for inclusion in the 

non-Boltzmann reservoir by performing a cluster analysis based on structural similarity on the 

Boltzmann-weighted reservoir of 10,000 structures.  The representative structure of each of the 

700 resultant clusters was extracted for inclusion in the non-Boltzmann reservoir, resulting in an 

ensemble in which each member had a probability of 1/700 of being selected for an exchange to 

lower temperature.  Whereas the Boltzmann-weighted reservoir that had originally been used 

contained approximately 3% native structures, the non-Boltzmann reservoir contained only a 

single native structure, with a probability of 1/700.  The use of this “flat” reservoir required the 

re-derivation of the Metropolis criterion, as described in Reference [156] and derived below in 

Section 4.2.    

 The results of using the equally-weighted non-Boltzmann reservoir indicated that 

accelerated convergence and an accurate thermal stability profile can be reached with an 
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arbitrary reservoir as long as the correct Metropolis criterion is used.  Melting curves obtained 

from simulations with this reservoir were virtually identical to those obtained using a standard 

REMD simulation without the use of a reservoir.  Additionally, convergence speedup of a factor 

on the order of 10 was obtained using R-REMD with either the Boltzmann-weighted or non-

Boltzmann-weighted reservoir compared against using REMD without a reservoir.  These results 

indicate that similar acceleration of convergence was observed from using either the Boltzmann-

weighted or non-Boltzmann-weighted reservoir.  However, if the time required for reservoir 

generation is included in calculating the total simulation time, we expect that the use of the non-

Boltzmann reservoir decreases the total simulation time. 

 In this chapter, we outline a method that uses the R-REMD exchange formalism in 

combination with a non-Boltzmann-weighted reservoir containing structures that have been 

assigned to clusters using a structural similarity metric.  Although the method of R-REMD with 

evenly distributed weights described above was effective, the use of only a single conformation 

from each structural cluster may lead to incomplete sampling with larger systems, as the 

reservoir in this case is populated only by structures that are located toward the bottom of their 

respective conformational basin.  By clustering the reservoir structures and including the 

complete ensemble in the reservoir during the simulation, we increase the diversity of structures 

that may be sampled.  In order to drive the acceptance of structures that in standard REMD 

would have a low probability of acceptance, we use the relative probabilities of the reservoir 

structure and the highest-temperature replica structure in order to scale the value of the 

Metropolis exchange criterion.   

This method, which we have termed “non-Boltzmann reservoir replica exchange 

molecular dynamics with user-defined weights,” was tested on the model system alanine 
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dipeptide in implicit solvent, with limited success.  Discovering why this method yielded 

inaccurate results required that simpler coarse-grained simulations were undertaken in which 

only the potential energies of the alanine dipeptide conformations were used, and their atomistic 

degrees of freedom were ignored.  These energies were then used to subject the system to a 

random walk in an energy space in which the partition function, and therefore the relative 

probability of each state, was a priori known.  This simulation methodology allowed for greater 

control in testing different structural metrics for use with the clustering algorithm in order to 

elucidate its influence on the resultant ensembles.  The following section of this work outlines 

the formulation of standard replica exchange molecular dynamics, reservoir replica exchange 

molecular dynamics with both Boltzmann-weighted and non-Boltzmann-weighted reservoirs, 

and non-Boltzmann reservoir replica exchange molecular dynamics with user-defined weights. 

4.2 Derivation of Equations 

 We consider a system of N atoms of mass mk (k=1,…,N) with coordinate and momentum 

vectors },...,{ 1 Nqqq


  and },...,{ 1 Nppp


 , respectively.  The Hamiltonian of this system is the 

sum of its kinetic energy K(p) and its potential energy E(q) as follows: 
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In a standard replica-exchange molecular dynamics simulation, the system comprises M 

independent copies, also known as replicas, of the original system at M different temperatures Tm 

(m=1,…M).  Only one replica is present at each temperature, and we label the replicas as i 
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(i=1,…M).  In the single replica i at temperature Tm, the state X is specified by the M sets of 

coordinates and momenta of the N atoms in replica i at temperature Tm as follows: 
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At intervals during the simulation, we attempt to exchange the structures presented by 

two replicas that are adjacent in temperature.  Considering the exchange of states i and j, which 

are at temperatures of Tm and Tn, respectively, the exchange of state X to state X' may be 

expressed as 
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In the canonical ensemble, the equilibrium probability of each state at temperature Tm is given by 

the Boltzmann factor W as follows: 
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where kB is the Boltzmann constant.  Because the replicas in the system do not interact, the 

weight factor of state X in this ensemble is the product of the Boltzmann factors of each of the 

replicas: 
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Imposing the condition of detailed balance on the transition probability for the exchange 

of states i and j ensures that the exchange process converges towards an equilibrium distribution: 

)'()'()'()( XXwXWXXwXW   .          (4.8)  



92 

 

Decoupling of the coordinates and momenta in the Hamiltonian as outlined in Reference [126] 

allows the Boltzmann factor to be written as 
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and substituting the Boltzmann factor for the weight of each conformation, we may express 

Equation 4.8 for an exchange between states at temperatures Tm and Tn as follows: 
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 Through rearrangement of Equation 4.10, we obtain 
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where 
nB

n
Tk

1
    .     

Exchanges between replicas must therefore obey the following exchange criterion 

 ))()()(exp,1min ][][ ji

mn qEqE     ,                  (4.12) 

known as the Metropolis criterion [33], to ensure that exchanges drive each replica to Boltzmann 

weighting. 

 During a standard REMD simulation, replicas at different temperatures are independently 

run using MD.  At a predetermined number of steps, an exchange is attempted between replicas 

that are adjacent in temperature, with the probability of success determined from Equation 

(4.12).  If the exchange is accepted, the temperatures of the replicas are swapped through 

velocity rescaling as follows: 
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            (4.13) 

and these structures then continue in their MD trajectories at their new temperatures.  If the 

exchange is not accepted, the replicas remain at their current temperatures and continue in their 

MD trajectories. 

The central idea of reservoir REMD is to generate a collection of high-temperature 

structures using MD before the REMD simulation is run, and to then attempt to use these static 

structures for exchange with the highest-temperature replica.  Simultaneously, the lower-

temperature replicas are attempting to exchange structures among each other as in standard 

REMD.  When performing REMD simulations with a pre-generated reservoir of Boltzmann-

weighted structures, the same set of exchange equations are used to either accept or reject the 

randomly selected reservoir structure as in Equation (4.12).  For exchanges between the highest-

temperature replica and the reservoir, the temperatures that are used in this equation are the 

temperatures of the high-temperature reservoir and the temperature at which the reservoir 

structures were generated.  For exchanges between neighboring replicas, the temperatures of the 

two replicas are used, as in standard REMD.  If an exchange between the highest-temperature 

replica and the reservoir is accepted, the coordinates and velocities of the reservoir structure are 

sent to the highest-temperature replica.  Formally, the coordinates and velocities from the 

highest-temperature replica should be added to the reservoir; however, for computational 

convenience, they are discarded, as we assume that the reservoir already comprises a complete 

representation of the ensemble.  By the same reasoning, a reservoir structure that is accepted for 

exchange from the high-temperature replica is left in the reservoir and is not discarded. 
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When a non-Boltzmann-weighted reservoir is used with R-REMD, a new exchange 

criterion needs to be derived in order for the exchanges to drive the ensemble to Boltzmann 

weighting.  In the study of Roitberg et al. [156], it was proven that any ensemble could be used 

for the reservoir; the collection of structures does not need to be Boltzmann weighted as long as 

its probability distribution is known.  Considering i replicas associated with M temperatures, we 

explicitly write the exchange probability between two replicas as follows: 
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    (4.14) 

which may be rewritten as the product of populations as 
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Inserting the Boltzmann populations into Equation (4.15) yields the exchange criteria equation 

from standard REMD: 
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    .               (4.16) 

In order to create the reservoir used in [156], a Boltzmann-weighted reservoir was 

clustered using a structural similarity metric, and the representative structure from each of the 

resultant 700 clusters was included in the reservoir.  In this case, the probability of selecting 

structure i from the reservoir of size M is 1/M.  Exchanges between replicas that do not involve 

the reservoir obey the Metropolis criterion of Equation (4.16), while exchanges between a replica 

and the reservoir obey the following criterion: 



95 

 

 
 

   
   

  
  

     ][][

][

][

exp

exp)/1(

exp)/1(

,,

,,

kj

t

i

t

j

t

t

k

R

j

t

j

R

k

t

k

R

j

t

j

R

k

R

k

t

j

t

k

R

j

qEqE

qEM

qEM

XwXw

XwXw

XXXXW

XXXXW



















                                        

(4.17) 

Because the probability distribution of the reservoir is flat, the temperature of the reservoir may 

be assumed to be infinite  0R , and only the temperature of the replica exchanging with the 

reservoir is used.  The temperature of the reservoir itself is not needed in the expression for the 

exchange criterion. 

 In our new implementation of R-REMD, we would like to maintain the use of a non-

Boltzmann reservoir that has been clustered by structural similarity; however, instead of using 

only the representative structure of each cluster for exchange, we would like to include all of the 

structures in each cluster in order to increase the structural heterogeneity of the reservoir 

structures available for exchange, and to accelerate convergence, particularly in application to 

Hamiltonian replica exchange MD in which different forcefields are used.  In order to implement 

this idea, we first tried weighting the value of the Metropolis acceptance probability by a limiting 

probability that compares the relative populations of the clusters to which the highest-

temperature replica structure and reservoir structure under exchange belong.  Although the 

highest-temperature replica structure is not included in the reservoir, before exchange, this 

structure is compared against the full set of reservoir structures and assigned to a cluster as if it 

were part of the reservoir ensemble.  We then compare the energies of the highest-temperature 

replica structure and the randomly chosen reservoir structure, and use these energies to calculate 

the Metropolis acceptance probability.   
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 The probability distribution of each structure in the MD replica may now be written as 

 
tot

MDt

j
N

N
Xw  , where NMD is the population of the cluster to which structure j would belong if it 

were in the reservoir, and Ntot is the total number of structures that have been clustered (in this 

implementation, as in the work of Okur et al. [158], the size of the reservoir is limited to 10,000 

structures; this number may be increased in the future).  The probability distribution of the 

randomly chosen structure from the reservoir is  
tot

rsvR

k
N

N
Xw  , where Nrsv is the population of 

the cluster in the reservoir to which structure j belongs, and Ntot is the total number of structures.  

We may now rewrite the Metropolis acceptance criterion as follows: 
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     (4.18)      

 As outlined below in Section 4.4, test simulations run using this exchange criterion were 

not successful.  Even after systematic changes were made to the reservoir contents in order to 

discern the influence of reservoir ensemble on the output ensemble, we were unable to determine 

the source of error in our methodology.  We then modified Equation (4.18) to place the decision 

to accept or reject the structure after the determination of the Metropolis criterion.  Thus, rather 

than scaling the Metropolis criterion itself, we scale how often a structure is accepted or rejected.  

This six-case formalism was used for subsequent test simulations.  As in regular R-REMD, a 

random structure is chosen from the reservoir for exchange with the structure undergoing MD in 

the highest-temperature replica.  The Metropolis criterion is then calculated using the potential 

energies of these two structures according to Equation (4.17), and the decision on whether to 
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accept or reject the reservoir structure is based not only on the value of the Metropolis criterion, 

but also on the value of the weighting factor.  According to the formalism of Equation 4.12, if 

the value of the Metropolis criterion is greater than the chosen random number, this structure 

would be accepted.  However, in this new formalism, the value of the weight factor is now used 

to determine the frequency at which the structure will be accepted. 

 We begin with the situation where the value of the Metropolis criterion and random 

number suggest a favorable exchange between the reservoir structure and the structure in the 

highest-temperature replica.  If 1
rsv

MD

N

N
, no correction is necessary to the acceptance frequency; 

because these two structures are in the same cluster, scaling is unnecessary, and we accept the 

structure.  If 1
rsv

MD

N

N
, this indicates that the reservoir structure is underrepresented relative to 

the high-temperature replica structure.  Again, no correction to the acceptance frequency is 

needed; we accept the structure.  If 1
rsv

MD

N

N
, the reservoir structure is overrepresented relative to 

the highest-temperature replica structure.  Although the value of the Metropolis criterion would 

require that we accept the structure based on its energy, the ratio of the weight factors indicates 

that we should scale back the acceptance frequency of this structure by a factor of 
rsv

MD

N

N
.  We 

therefore generate a second random number against which to compare the value of the weight 

factor.  If the value of the weight factor is greater than this second random number then we 

accept the exchange, and if the weight factor is less than or equal to the random number, we 

reject the structure.   
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 We now consider the situation in which the value of the Metropolis criterion and random 

number suggest that the exchange of structures is rejected.  If 1
rsv

MD

N

N
, both structures are in the 

same cluster and no correction is needed to the acceptance frequency.  If 1
rsv

MD

N

N
, the reservoir 

structure is overrepresented relative to the structure of the highest-temperature replica; no 

correction to the acceptance frequenecy is needed, and we reject this structure.  If 1
rsv

MD

N

N
, the 

reservoir structure is underrepresented relative to the MD structure.  Although the value of the 

Metropolis criterion would require that we reject the structure based on its energy, the ratio of 

the weight factors indicates that we should scale up the acceptance frequency of this structure by 

a factor of 
rsv

MD

N

N
.  As before, we generate a second random number against which to compare the 

value of the weight factor, and if the value of the weight factor is less than the random number, 

the structure is rejected as the weight factor is not large enough to drive the acceptance.  

 Tests using both the two-case and six-case exchange criteria were run on the model 

system alanine dipeptide in implicit solvent.  The results of these simulations were unpredictable, 

and no correlation could be made between the population of the reservoir ensemble and the 

ensemble that was obtained after the simulation was run.  Our inability to identify a source of 

systematic error indicated that a simpler system was required in order to accurately test this 

methodology.  Following the initial tests, code was written to test this method using only the 

potential energies of the alanine dipeptide molecule to achieve a random walk in potential energy 

space.  Using only the energies of the peptide allowed inaccuracies in the algorithm to be more 

easily diagnosed, as we were able to both analytically write the partition function and divide the 



99 

 

energy grid into different structural clusters for testing purposes.  Results from this coarse-

grained simulation are outlined in Section 4.4. 

4.3 Model System: Alanine Dipeptide 

 Terminally blocked alanine dipeptide (AdP), with the amino acid sequence Ace-Ala-Nme 

(Figure 4.1), is commonly used as a model system for larger nonglycine/nonproline protein 

backbones in computational studies of conformational sampling.  Although this peptide is 

extremely simple, it is able upon solvation to fully sample the range of φ and ψ dihedral angles 

that is available to protein alpha helix and beta strand motifs.  Additionally, the peptide contains 

two amide peptide bonds that are capable of hydrogen bonding to one another, as well as to polar 

solvent molecules.  The simplicity of the molecule has allowed its conformational and energetic 

landscapes to be fully quantified experimentally, as well as theoretically through high-level 

quantum calculations, as well as Monte Carlo or molecular dynamics approaches.  The series of 

alanine peptides is often used for the parameterization of dihedral angles in molecular mechanics 

forcefields.  

 

Figure 4.1: Terminally blocked alanine peptide (Ace-Ala-Nme). 
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4.4 Methods and Results 

 In this Section, we describe efforts to undertake simulations of alanine dipeptide using a 

non-Boltzmann-weighted reservoir.  We describe the steps taken in the construction of this 

reservoir, and show results obtained using the exchange formula outlined in Equation 4.18.  

Because this scheme was unsuccessful, we outline subsequent attempts to uncover the cause of 

the error in our algorithm.  To this end, we created a non-Boltzmann-weighted reservoir with 

systematic structural variation.  When tests using this reservoir were not successful, we wrote 

code to mimic the random walk of alanine dipeptide in φ/ψ space, using only the potential energy 

of the structure in order to reduce the complexity of the problem.  We attempted four different 

clustering schemes with this reduced code in order to examine the effect of clustering algorithm 

on the resulting ensemble; these results are presented below. 

 In order to obtain a converged trajectory of alanine dipeptide for subsequent construction 

of a Boltzmann-weighted reservoir, the molecule was built using the Leap module, and a single 

Langevin dynamics trajectory was run at 400K for 1 μs.  Version 10 of the AMBER molecular 

dynamics package was used for these simulations.  A version of the ff99 forcefield with modified 

backbone parameters to reduce α-helical bias [76] was employed.  All nonbonded interactions 

were evaluated at each MD time step and SHAKE was used to constrain all bonds to hydrogen.  

The time step used was 2 fs, and the collision frequency used was 1.0 ps
-1

.  All simulations used 

the Generalized Born (GB) implicit solvent model [155] with GB
OBC

 implementation [157] in 

AMBER.  In order to assess the convergence of the trajectory, a two-dimensional histogram of 

the free energy dependence on the dihedral angles was plotted (Figure 4.2). 



101 

 

 

Figure 4.2: Free energy landscape of alanine dipeptide trajectory run for 1μs at 400 K.  Energy units are in kcal/mol. 

 

 In order to create reservoirs for subsequent R-REMD simulations, single structures were 

extracted at each 0.2 ns of the microsecond-long trajectory, yielding a total of 5,000 structures.  

In order to assure that this ensemble of structures was Boltzmann-weighted, its structural content 

was compared to the 400 K, microsecond-long trajectory from which it was extracted (Table 

4.1).  The distribution of structures in the ensemble agrees well with a Boltzmann-weighted 

ensemble of structures [185].  This ensemble of structures was then clustered by structural 

similarity, with a cutoff of 0.5 Å on the heavy atoms, resulting in 13 distinct structural clusters.  

The structural content of each cluster was determined and is given in Table 4.2.   

Ensemble α β P
II

 α
L
 

1μs MD trajectory at 400 K, all frames 31.9±0.3% 23.7±0.05% 28.4±0.09% 2.4±0.4% 

5,000 frames extracted from 1μs MD trajectory 32.4±0.8% 23.0±0.5% 28.9±0.4% 2.6±0.9% 

 

Table 4.1: Structural content of the 1μs MD trajectory at 400K, all frames and the ensemble of structures extracted 

from that trajectory. 
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Cluster Number Population Percentage of Reservoir Structural Content 

1 1423 28.5% 91% P
II
 

2 948 19.0% 97% α 

3 185 3.7% 63% β 

4 426 8.5% 87% α 

5 1128 22.6% 93% β 

6 349 7.0% 72% α 

7 173 3.5% 20% β 

8 36 0.7% No discernible content 

9 119 2.4% 92% P
II
 

10 93 1.9% 82% α 

11 86 1.7% 6% β 

12 24 0.5% 83% P
II
 

13 10 0.2% No discernible content 

 

Table 4.2: Populations and structural content of each of the 13 clusters obtained from clustering the 5,000 structures 

extracted from the 1 μs alanine dipeptide trajectory at 400 K using a 0.5 Å cutoff on the heavy atoms. 

 

 Reservoir replica-exchange molecular dynamics simulations were then run using the 

5,000 Boltzmann-weighted structures as the reservoir.  The simulation was run assuming 

Boltzmann-weighting of the reservoir (acceptance probability in accordance with Equation 4.16) 

in order to provide a point of comparison for future R-REMD runs with a non-Boltzmann 

reservoir.  In this R-REMD simulation of alanine dipeptide, four replicas covering a temperature 

range of 275-375 K were used.  Exchanges between neighboring replicas were attempted at 

intervals of 1 ps.  The REMD simulation was run to 500,000 exchange attempts, for a total of 
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500 ns per replica.  Other parameters were as described above for the LD simulations of AdP.  

Table 4.3 gives the populations at end of the R-REMD run with the Boltzmann-weighted 

reservoir of 5,000 structures; these populations agree well with those given in Table 4.1, 

indicating that the simulation is converged and gives accurate results. 

Temperature α β P
II

 α
L
 

275 K 35.0% 24.7% 30.4% 2.2% 

300 K 34.3% 24.4% 30.3% 2.5% 

325 K 33.9% 23.7% 28.9% 3.0% 

350 K 34.8% 23.3% 28.2% 3.1% 

Table 4.3: Populations of structural families from control R-REMD simulation using reservoir of 5,000 Boltzmann-

weighted structures. 

 

In order to test the procedure of using R-REMD with a non-Boltzmann-weighted 

reservoir with user-defined weights, we created a non-Boltzmann-weighted reservoir from the 

5,000 Boltzmann-weighted structures by systematically increasing the populations of certain 

structures in the reservoir.  In accordance with this new method, we expect the weight factor to 

correct for the inhomogeneity of the reservoir.  Because the structural contents of each cluster are 

known (Table 4.2), we can independently increase the populations of different types of structures 

to create reservoirs containing very different ensembles.  We may then compare the reservoir 

ensemble with the ensemble resulting from the simulation in order to detect any systematic 

structural undersampling or oversampling. 

To this end, we created three non-Boltzmann-weighted (NBW) ensembles through 

independently increasing the populations of cluster 1, cluster 2, and cluster 5, such that each of 

these clusters comprised approximately 54% of the NBW reservoir (Table 4.4).  These clusters 

were chosen because they each contain predominantly a single type of secondary structure, so 
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that we may examine the effect on the resultant ensemble of independently increasing the 

population of a single type of structure and thereby have control over the contents of the 

reservoir.  Table 4.4 outlines the contents of each of the three new reservoirs.   

Cluster 

Number 

Population 

in BW 

Reservoir 

Structural 

Content 

Percentage 

of BW 

Reservoir 

NBW Reservoir 

Population 

Enhancement 

Total 

Number of 

Structures in 

Cluster 

Number of 

Members 

in NBW 

Reservoir 

Percent of 

Reservoir 

`1 1423 91% P
II
 28.5% x2 4269 7846 54.4% 

2 948 97% α 19.0% x4 4740 8792 53.9% 

5 1128 93% β 22.6% x3 4512 8384 53.8% 

Table 4.4: Construction of non-Boltzmann-weighted (NBW) reservoirs from the original Boltzmann-weighted (BW) 

reservoir of 5,000 frames. 

 

 Following the construction of these new reservoirs, we ran non-Boltzmann R-REMD 

using the cluster weights in order to examine the effect on the output ensemble.  Exchanges 

between the highest-temperature reservoir proceeded according to Equation 4.18, while those 

between any two replicas proceeded according to Equation 4.16.  The results in Table 4.5 are 

averaged over the four replica trajectories for each system at 275 K, 300 K, 325 K, and 350 K, 

and should be compared against Table 4.1 above in order to discern their difference from 

Boltzmann weighting.   

Reservoir α β P
II

 α
L
 

Increased Cluster 

1 (91% P
II
) 

26.6% 26.8% 35.6% 2.0% 

Increased Cluster 

2 (97% α) 
34.3% 19.5% 23.4% 10.6% 

Increased Cluster 

5 (93% β) 
36.7% 18.3% 22.3% 10.5% 

Table 4.5: Average structural content over replica trajectory structures at 275 K, 300 K, 325 K, and 350 K for user-

defined non-Boltzmann R-REMD runs using non-Boltzmann-weighted reservoirs with increased populations of 

specific types of structures.   
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 From these results, it is clear that the reweighting scheme in Equation 4.18 does not 

adequately correct for reservoir overpopulation of structures belonging to particular clusters.  

Additionally, the error in the results is not predictable based on the type of structure that is 

overrepresented in the reservoir, as we hoped it would be when designing the NBW reservoirs.  

Comparing the results in Table 4.5 to those in Table 4.1, it is evident that increasing the 

population of polyproline-II helical structures in the reservoir leads to oversampling of 

polyproline-II
 
structures, undersampling of α-helical structures, slight undersampling of β-sheet 

structures, and very slight undersampling of the left-handed α-helical structures.  Independently 

increasing the populations of α-helical or β-sheet structures resulted in ensembles with nearly 

identical populations of structures, with oversampling of α-helical structures, undersampling of 

β-sheet and polyproline-II structures, and a marked oversampling of left-handed α-helical 

structures.  Careful examination of exchange and acceptance rates of each cluster did not reveal 

any trends that were helpful in determining the sampling trends that are indicated in Table 4.5.  

 We thus determined that it was necessary to reduce the complexity of the problem by 

constraining the alanine dipeptide structures to discrete values of φ and ψ dihedral angles for 

which we were able to determine the potential energy, and subsequently writing code that would 

simulate a random walk in the peptide’s dihedral angle space.  Knowing the energy of each state 

allows for exact calculation of the partition function, which in turn allows for determination of 

the correct probability of each state on the energy landscape and a knowledge of areas that are 

being incorrectly treated by the exchange algorithm. 

 In order to determine the energy of alanine dipeptide as a function of its dihedral angles, 

a script was written in the Leap module of AMBER which generated structures corresponding to 

every 5 degrees in the φ and ψ angles of the Ramachandran plot.  The result of running this script 
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was a grid of 5,184 alanine dipeptide structures for which the potential energies are known.  

Code was then written to simulate a random walk between neighboring states on this grid with 

exchange probability calculated according to Equation 4.12.  Exchanges with the reservoir were 

simulated by allowing a periodic random move to a non-neighboring grid point, with the 

probability calculated according to Equation 4.18.  The code was constructed so that this grid 

could be divided into structural regions in order to mimic the clustering of structures by 

structural similarity that was performed in the unsuccessful tests runs.  By systematically 

changing the regions of clustering, we hoped to gain insight into the effect of the choice of 

structural clustering metric on the output ensemble.  The potential energy landscape of alanine 

dipeptide is shown in Figure 4.3.  A range of tests was performed with this random walk 

toymodel, including variations in the clustering metrics and the placement of the weight factor.   

 

Figure 4.3: Potential energy landscape of alanine dipeptide obtained through construction of states in phi/psi space.  

Energy is in units of kcal/mol. 

 

 The first test was to perform a random walk on the potential energy grid with Metropolis-

criterion-based exchanges attempted only between neighboring states.  No random moves on the 

energy grid were included, and the exchange probability was calculated according to Equation 
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4.12.  As in REMD exchanges between two temperatures, this equation takes into account the 

energies and temperatures of the two states that are being considered for exchange.  We are not 

using a reservoir of structures in this test.  The random walk was simulated for a total of 100 

million steps, and three different temperatures were run: 300 K, 375 K, and 450 K. The results, 

shown below in Figure 4.4, show the error for each of the 5,184 states in dihedral angle space.  

This landscape should be compared against Figure 4.3 in order to qualitatively understand which 

structural areas of the landscape are correctly or incorrectly sampled in this test.  Quantitative 

comparison of Figure 4.4 with Figure 4.3 is not possible, as Figure 4.4 shows the sampling errors 

in terms of populations, whereas Figure 4.3 shows the landscape in terms of energies.  Error was 

calculated as the difference between the observed probability of that state and the expected 

probability calculated based on the partition function.  The scale of error in Figure 4.4 is in 

hundredths of a percent; all colored areas on the graph have errors that are bounded by 25% in 

either undersampling or oversampling.  Areas with negative values are oversampled, and those 

with positive values are undersampled.  Regions with error larger than 25% in undersampling or 

oversampling are shown in white; in Figure 4.4, these are the barrier areas of relatively high 

energy that have a low probability of being sampled during the simulation.  As expected, we see 

that the sampling improves as the temperature increases; regions that are unexplored and have 

high error at low temperature, particularly at the barrier regions, see this error diminish as the 

temperature increases. 
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Figure 4.4: Superimposition of population error for nearest-neighbor random walk onto potential energy landscape 

of alanine dipeptide obtained through construction of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  

Errors are in hundredths of a percent. 
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 Following this nearest-neighbor random walk, we then ran the same simulation with the 

addition of random moves to enable increased exploration of the landscape and to mimic the 

random exchange attempts of the highest-temperature replica with the reservoir.  Nearest-

neighbor exchanges were attempted as before, but every tenth move, exchanges were permitted 

to occur via random exploration or ‘jumps’ on the energy landscape.  Using these jumps, we 

expect to sample high-energy areas of the landscape that would be inaccessible if only a random 

walk between adjacent states is performed.  Two sets of simulations were run in order to set up a 

control against which later tests could be compared.  In the first test, acceptance of both nearest-

neighbor exchange moves and jump moves was determined according to Equation 4.12; no 

weights were used in the calculation of the exchange probability.  In the second test, acceptance 

of nearest-neighbor moves was determined according to Equation 4.12, while Equation 4.18, 

with NMD and Nrsv both set equal to 1, was used to determine the acceptance of the jump moves.  

The purpose of the second procedure is to test that the weight calculation has been correctly 

integrated into the simulation code, as correct calculation of the weight factors will give a result 

that is equal to that obtained using Equation 4.12.   

 The results from these two tests were identical, indicating that the algorithm written with 

the inclusion of Equation 4.18 for jump moves was correctly written and implemented.  Results 

from only the second test are shown in Figure 4.5.  When compared with Figure 4.4, these results 

indicate that sampling is much improved, particularly at lower temperature; the inclusion of a 

random jump move allows a greater area of the energy landscape to be explored than in the case 

of only nearest-neighbor moves.  As before, the sampling error is seen to decrease as the 

temperature increases.  Sampling errors are low; all states shown in color Figure 4.5 have 

undersampling or oversampling errors within 25%, and the majority of the landscape exhibits 
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sampling errors that are less than 5%.  Regions shown in white have errors that are larger than 

25% in undersampling or oversampling.   
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Figure 4.5: Superimposition of population error for nearest-neighbor random walk with random landscape 

exploration onto potential energy landscape of alanine dipeptide obtained through construction of states in phi/psi 

space for (a) 300 K, (b) 375 K, (c) 450 K.  Errors are in hundredths of a percent. 
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 In order to investigate the effect of using Equation 4.18 for exchanges, the energy 

landscape was divided into areas of structural similarity in order to mimic the structural 

clustering of the reservoir and replica structures that was used to weight the exchanges in the 

simulation of alanine dipeptide.  Using the potential energy landscape as a guide, clusters were 

created by visually dividing the peptide’s dihedral angle space into discrete structural regions.  

For each cluster, delineated in Figure 4.6 by bold black lines, the population and average energy 

were calculated.  The average energies of each cluster were not used in the calculation of the 

Metropolis criterion, but are rather shown here to give a sense of the energies of the structures 

contained within each cluster, and to give an idea of whether certain energetic areas of the 

landscape were excluded from exchanges.  Figure 4.6 shows two clustering schemes that were 

used.   

 The first scheme did not distinguish between the β and P
II
 basins, and separates both of 

the higher-energy barrier regions at -50°˂ φ ˂ 25°and 75°˂ φ ˂ 180° from the basin regions at -

180°˂ φ ˂ -50° and 75°˂ φ ˂180°.  The second scheme divides the β and P
II
 basins and places 

the highest-energy barrier regions at 75°˂ φ ˂180° in their own clusters, but includes structures 

from the barrier region at -50°˂ φ ˂ 25° in the clusters containing structures from the adjacent 

basins at -180°˂ φ ˂ -50°.  Using these differing clustering schemes, we hoped to determine the 

effect of the choice of clustering metric on the ensemble that is output after the simulation.  In 

each of these two tests, 10 nearest-neighbor moves with acceptance probability determined 

according to Equation 4.12 were followed by a random jump on the grid which used Equation 

4.18, with NMD and Nrsv equal to the cluster weights, to determine the acceptance of the jump 

moves.   
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Figure 4.6: Potential energy landscape of alanine dipeptide obtained through construction of states in phi/psi space 

showing division of landscape into areas of structural similarity.  Figure (a) considers the β and P
II
 basins to be 

continuous, whereas Figure (b) divides those structural basins into two discrete clusters.  For each such area, the 

average energy Ē and population of the cluster is given.  Energy is in units of kcal/mol. 
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 As is evident from Figure 4.7, the addition of the cluster weights to the acceptance 

probability calculation lead to serious errors in the sampling.  In Figure 4.7, colored regions 

outline areas where the error in undersampling and oversampling ranges from -100% to +100%.  

Areas shown in white have sampling errors that are larger than 100%.  For all temperatures, the 

error in undersampling appears to be largest in the region defined by -180°˂ φ ˂ -25° and -50°˂ 

ψ˂50°, which exhibits error ranging from approximately 40%-70%.  This region corresponds to 

the cluster containing the α-helical basin, which is the most populated cluster in the scheme 

presented in Figure 4.6a.  At low temperature, sampling errors are generally within an error of 

25% in the rest of the region defined by -180°˂ φ ˂ -25°, although the areas of 150°˂ ψ˂180° 

and -125°˂ ψ˂-100°do exhibit large oversampling errors. 

 As expected, the sampling rate of the higher-energy areas of the landscape does increase 

with temperature; however, the lower-energy areas of the landscape do not exhibit more accurate 

sampling as the temperature is increased.  As temperature increases, the undersampling of the α-

helical basin increases.  Undersampling also becomes markedly worse in the transition region 

separating the α-helical basin from the β/P
II
 basin at 35°˂ ψ˂110°.  Two areas that are 

oversampled at lower temperatures, those centered on (φ = -100°, ψ = -100°) and (φ = -75°, ψ = 

150°), show a decrease in oversampling with temperature.   
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Figure 4.7: Superimposition of population error for nearest-neighbor random walk with random landscape 

exploration using cluster weights onto potential energy landscape of alanine dipeptide obtained through construction 

of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  Errors are in hundredths of a percent. 
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 Figure 4.8 shows the population errors after the clustering scheme is used in which the α-

helical and β/P
II
 basins are divided, as shown in Figure 4.6b.  In Figure 4.8, the error in 

undersampling and oversampling ranges from -100% to +100% is shown in color; areas in white 

exhibited errors that are greater than 100%.  In comparison with Figure 4.7, sampling is now 

exhibited in the regions of the left-handed α-helical basin (centered on φ = 50°).  Examining the 

two cluster schemes shown in Figure 4.6, we note that structures from the higher-energy barrier 

region centered on φ = 0° are contained in discrete clusters in the clustering scheme in Figure 

4.6a, whereas the clustering scheme in Figure 4.6b incorporates these higher-energy structures 

into the clusters containing the lower-energy P
II
 and α-helical basins.   

 Despite this global improvement in the area of the landscape that is sampled using this 

clustering scheme, the rates of sampling remain incorrect.  A high rate of undersampling (40-

50%) is again exhibited in the region of the α-helical basin.  In the sampling scheme shown in 

Figure 4.6b, this basin is divided into two clusters, and only one of those clusters is 

undersampled; the other exhibits sampling that is within a smaller error bound (~25%).  The left-

handed α-helical basin is also seen to exhibit significant undersampling.  Oversampling is 

exhibited in the area of the β-sheet cluster, as well as in the transition region between the α-

helical and β-sheet clusters centered on (φ = -150°, ψ = -125°).  Both oversampling and 

undersampling errors are seen to increase as the temperature increases. 
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Figure 4.8: Superimposition of population error for nearest-neighbor random walk with random landscape 

exploration using cluster weights onto potential energy landscape of alanine dipeptide obtained through construction 

of states in phi/psi space for (a) 300 K, (b) 375 K, (c) 450 K.  Errors are in hundredths of a percent. 
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 It is remarkable that such a small change in the clustering scheme results in such a large 

change in the rates of sampling of certain clusters.  Comparing the clustering schemes presented 

in Figure 4.6 and their results in Figures 4.7 and 4.8, it is evident that separating the high-energy 

barrier regions into their own low-population clusters did not drive sampling of these structures.  

According to Equation 4.18, structures belonging to clusters with small populations should be 

favored in the exchange of structures.  From the results in Figures 4.7 and 4.8, it appears that the 

α-helical basin was undersampled in both schemes.  Because its cluster had the largest 

population in both schemes, we may conclude that the scaling factor in Equation 4.18 works to 

scale back these structures, although it appears to be scaling these structures too often.   

Similarly, in the second clustering scheme, the relatively large population of the left-handed α-

helical basin is undersampled, its population having been decreased through application of 

Equation 4.18.  The structures in these basins should be energetically quite favorable to accept 

during an exchange, so it is surprising that they are undersampled using both of these clustering 

schemes. 

 It is notable that the second clustering scheme, in which each cluster had a larger range of 

energies among its structures, was more successful in overall sampling of the landscape than the 

first scheme.  In the clusters obtained using the algorithm described above for the atomistic 

treatment of alanine dipeptide, in which a reservoir was created using a high-temperature 

reservoir and structures were grouped and assigned to clusters using the metric of backbone 

RMSD, there was a large energetic heterogeneity within each cluster.  In order to test whether 

the energetic homogeneity of the clusters as defined in Figure 4.6 was the root cause of the 

sampling errors exhibited in Figures 4.7 and 4.8, the structures on the energy landscape were 

clustered by structural similarity with a cutoff of 0.5 Ǻ on the heavy atoms.  This metric is the 



119 

 

same as that described above in the protocol to create the Boltzmann-weighted and non-

Boltzmann-weighted reservoirs.  These cluster populations were then used with Equation 4.18 

during random jump exchange attempts on the potential energy landscape shown in Figure 4.3.  

We also decided to test both the formalism of Equation 4.18, as well as the the six-case 

formalism outlined above, in which the value of the cluster scaling factor is used to scale the rate 

of acceptance rather than the Boltzmann factor, in order to determine the effect on the sampling. 

 Results from the simulations using the cluster weights determined through backbone 

RMSD are presented in Figure 4.9a for the two-case exchange criterion using Equation 4.18, and 

in Figure 4.9b for the six-case exchange criterion to scale the rate of acceptances as outlined 

above.  Colored areas exhibit error in undersampling and oversampling ranging between -100% 

and +100%; areas in white have larger error.  Results from simulations employing both of these 

exchange schemes are extremely similar.  In both cases, oversampling with an error of 

approximately 25-50% occurs at the regions of transition that are adjacent to the potential energy 

minima of the β/P
II
 basin, the α-helical basin, and the basin with left-handed α-helical structures.  

The basin regions have errors ranging from approximately 25% oversampling to approximately 

25% undersampling.  Neither of these exchange algorithms appeared to yield a Boltzmann-

weighted ensemble.    
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Figure 4.9: Superimposition of population error for nearest-neighbor random walk with random landscape 

exploration using cluster weights onto potential energy landscape of alanine dipeptide obtained through construction 

of states in phi/psi space for (a) 2-case exchange criterion, (b) siz-case exchange criterion.  Errors are in hundredths 

of a percent.  T=300K. 
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 Thus far in our tests, we have been using the populations of the structures under exchange 

in order to weight their acceptance probability.  We recall Equation 4.18, in which the 

probability distributions of the structures between which the exchange is being attempted are 

used to weight their Boltzmann factors.  Strictly, these probability distributions should be some 

function of the potential energy.  We therefore attempted a final simulation scheme in which the 

probability densities of the potential energies of the structures under exchange are used to weight 

their Boltzmann factors, as follows: 
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  .   (4.19) 

In this equation, EMD and Ersv are the potential energy densities of the structure from the highest-

temperature replica and the structure from the reservoir, respectively.  Potential energy densities 

were determined by grouping all of the energies on the potential energy landscape of the alanine 

dipeptide molecule by a specific energy cutoff.   

 The result of the simulation using the potential energies to weight the Boltzmann factor is 

shown in Figure 4.10.  In this simulation, an energy cutoff of 1.5 kcal/mol was used to define the 

energy clusters; other values were used for the energy cutoff, but 1.5 kcal/mol was seen to yield 

the most accurate results.  Errors in undersampling and oversampling ranged from -25% to 25%.  

Areas shown in white had larger errors in sampling.  This simulation was run at 300 K.  From the 

results below, it is evident that weighting the Boltzmann factors by the potential energy is the 

most successful of the schemes attempted thus far.  The greatest errors in oversampling are 

observed in the transition regions centered on (φ = -100°, ψ = -125°), (φ = 60°, ψ = -125°), and 

(φ = 60°, ψ = 110°), which comprise structures that are higher in energy than the structures in the 

adjacent energy basins.  Oversampling is also observed in regions bordering peaks of high 
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energy.  Oversampling in these regions indicates that the algorithm is attempting to increase the 

population of high-energy structures in the annealed ensemble.  The regions of the α-helical and 

left-handed α-helical basins are also oversampled by approximately 5-10%.  The region of the 

β/P
II
 well exhibits undersampling ranging from 0-25%. 

 

 

Figure 4.10: Superimposition of population error for nearest-neighbor random walk with random landscape 

exploration using cluster weights onto potential energy landscape of alanine dipeptide obtained through construction 

of states in phi/psi space.  Structures were clustered by the value of their potential energy with a cutoff of 1.5 

kcal/mol.  Errors are in hundredths of a percent.  T=300K. 
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4.5 Summary and Conclusions 

 

 Accurate conformational sampling remains one of the challenges facing the field of 

biomolecular simulation.  Through development of a variant of replica-exchange molecular 

dynamics, we have aimed to provide an algorithm with enhanced sampling and increased 

computational efficiency.  This algorithm uses a structural reservoir to decouple the high-

temperature search of conformational space, which is often a bottleneck in REMD simulations, 

from the annealing exchanges to lower temperatures.  This reservoir does not need to contain an 

ensemble that is Boltzmann-weighted, which further decreases the computational demand of the 

algorithm.   

 In this chapter, we have outlined attempts to use structural similarity clustering as a 

metric by which to drive the exchanges from the non-Boltzmann-weighted reservoir to produce a 

Boltzmann-weighted ensemble.  In the first cases of testing the algorithm, alanine dipeptide was 

used as the model system for simulations.  The algorithm did not yield successful results, and 

even after the systematic construction of three non-Boltzmann-weighted reservoirs of known 

content, errors were not able to be remedied.  We therefore constructed a simpler system which 

placed the potential energies of alanine dipeptide on a grid at every 5° in the peptide’s φ/ψ space.  

Simulations run using this system considered random-walk exchanges between neighboring grid 

points in order to mimic the MD simulation that occurs in each replica in an REMD simulation.  

Periodic ‘jumps’ by the random walker to a random point on the landscape were used to mimic 

the selection of a reservoir structure.  Three different structural clustering schemes were used in 

order to test this method, but none were successful.  A greater accuracy of results was observed 

when the probability densities of the energies of the two structures was employed as the 

weighting factor, rather than their relative probabilities based on their structure.  The success of 
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the initial tests of this energy clustering scheme indicate that this may be the correct avenue to 

pursue in the future with regards to this algorithm. 
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5. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a 

Comparative Study 

Abstract 

The utilization of nanoparticles has become widespread in the field of medicine, where 

their application extends from the cellular to the organ levels.  The advancement of targeted drug 

delivery systems has occurred alongside of advances in polymer chemistry that have increased 

the synthetic possibilities of polymeric materials.  These materials may be used to increase the 

solubility of drug molecules, target the drug molecules to a particular type of cell within the 

body, facilitate their transport to that target, and control their rate of release.  Targeted drug 

delivery requires that the delivery platform be compatible with the drug, customizable with 

respect to the biological target to be reached, nontoxic, and biodegradable.  The success of 

polymeric nanoparticles in this application is evidenced by the clinical trials that are currently 

underway for polymeric drug delivery platforms.  Improvements in the synthetic potential of 

polymers, along with the increase in numbers of identified drug-like molecules, have lead to a 

proliferation of combinatorial possibilities for pairings of drugs and their polymeric carriers.  On 

one hand, these advancements give therapies the potential to be tailored to a specific patient or 

type of disorder; while on the other, they necessitate a rational methodology for the design and 

optimization of such therapies.  

Computational methods have the potential to reduce the time and expense that are 

required by the material design and optimization that occur in the laboratory.  In this work, we 

have performed all-atom explicit solvent molecular dynamics simulations of three different star 

polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound 

to a small adamantane core.  The arms of each system consist of a relatively hydrophobic block 
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(either polylactide, polyvalerolactone, or polyethylene), and an outer hydrophilic block of 

polyethylene oxide (PEO).  These models exhibit unusual structure very close to the core that is 

clearly an artifact of our model, but which we believe becomes bulk-like at relatively short 

distances from this core.  We report on a number of temperature-dependent thermodynamic 

(structural and energetic) properties as well as kinetic properties.  Our observations suggest that 

under physiological conditions, the hydrophobic regions of these systems may be solid and 

glassy, with only rare and shallow penetration by water, and that a sharp boundary exists 

between the hydrophobic cores and either the PEO or water.  The PEO in these models is seen to 

be fully water-solvated at low temperatures but tends to phase separate from water as the 

temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-

water mixtures.  Water penetration concentration and depth are strongly composition- and 

temperature- dependent, with greater water penetration for the most ester-rich star polymer, 

polylactide.  It is our hope that the results of this study may be extended and used to determine 

the utility of these materials for drug delivery applications. 
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5.1 Introduction 

There is growing interest in the use of biocompatible polymeric nanoparticles for drug 

delivery.  The hope is that such materials can be engineered to absorb therapeutic (drug) 

molecules before their delivery into the body and then to release them in a controlled or 

programmed manner under physiological conditions.  Moreover, such nanoparticles could be 

functionalized on their exteriors to adhere to the membranes of cells of particular tissue types, or 

even to cells in a particular disease state.  Such targeted delivery systems would result in much 

more effective therapies than can be achieved by normal means, with a consequent lowering of 

dosage and reduction of potential side effects.   

Polymer chemists have shown amazing ingenuity [186,187,188] in producing polymers 

for these types of applications using complex sequences of monomeric units (e.g., diblock, 

triblock, and/or random copolymers) with various types of chemical functionality, a range of 

topologies, and various types and amounts of covalent and noncovalent cross-linking.  Candidate 

nanoparticles under consideration for drug delivery include micelle and vesicle assemblies made 

from polymers and polymer blends [189,190], as well as unimolecular systems with dendritic 

[191] and star [188] topologies and nanogel star polymers [186,187], which have polymeric arms 

emanating from a nanogel core.  Molecular systems with star, nanogel star, and dendritic 

topologies show promise over molecular assemblies because, being entirely covalently bonded, 

they are much more likely to be structurally stable over the range of environmental conditions 

seen in a living organism.  However, all of these systems may be useful in different contexts or 

for different applications.   
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Of particular interest in this area is the design of general purpose vehicular nanoparticles 

where, with a relatively small range of chemical or topological variation, one would be able to 

engineer delivery of a potentially large number of different types of cargo molecules to provide 

precise control of their release rate and/or target delivery site, or to transport multiple drug types 

simultaneously.  To enable these types of functional variation using, for example, a star polymer 

topology, the polymer chemist has the freedom to change the number and length of the arms, and 

each arm may itself be a diblock or triblock polymer with different segment lengths.  

Furthermore, with nanogel star polymers, the arms of such a molecule do not need to be identical 

in length and composition.  Through variation of these features, a polymer chemist can, in 

principle, design star molecules with multiple compartments tailored for different types of cargo.     

We are reminded that star polymer topologies exist in much broader classes of materials 

than just those with small molecule, dendritic or nanogel core junctions, such as in the case of 

polymer-coated gold nanoparticles [192,193].  Even micelles, though not chemically bound, can 

have polymer-solvent interactions that bear a strong resemblance to those of the star polymers.  

Star polymers can be synthesized and modeled with much smaller molecular systems, yet can 

serve as useful and characterizable models for the polymeric structure and solvent-nanoparticle 

interactions of these more complex systems.  

This work concerns the study of an important class of polymeric nanoparticle, namely, 

the star polymer topology where each arm of the star is itself a diblock copolymer.  In general, 

each arm of these molecules consists of a relatively hydrophobic region positioned close to the 

interior of the star and a relatively hydrophilic region on the exterior that serves to make the 

molecule water-soluble and prevent aggregation at finite concentrations.  
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  Because of their use in a number of commercial application areas, star polymers have 

been studied extensively from both a theoretical and experimental perspective.  Comprehensive 

reviews have been developed by Grest et al. [194] as well as by Likos [195].  Both of these 

reviews also provide numerous references to a large body of Monte Carlo and molecular 

dynamics simulation studies, most of which have employed coarse grained (e.g., beaded string) 

models with intramolecular interactions designed to model good and poor solvents in an implicit 

way.  These simulations have been very useful in helping to interpret experimental results and to 

validate theoretical scaling laws that describe the relationship, for example, between the radius of 

gyration and chain number and length in various qualities of solvent.  On the other hand, the 

literature of all-atom and explicit solvent simulations of star polymers is relatively sparse, 

particularly of star polymers with diblock arms.  Ganazzoli et al. [196] used Monte Carlo 

techniques and a mean field type of approach to determine how the arms of a star polymer might 

behave in a generic poor solvent.  Chang et al. [197] studied heteroarm copolymers, with some 

arms purely hydrophobic and some hydrophilic.  Lee and Larson [139,198] used coarse-grained 

molecular dynamics to model star polymers with a range of arm numbers and lengths with 

relatively long polyethylene oxide (PEO) arms bound to different sizes of dendrimeric cores.   

The work most relevant to this study is that of Huynh et al. [63].  They reported on a set 

of all-atom explicit solvent simulations of six-arm star polymers that explored the effect of 

varying the lengths of the hydrophobic and hydrophilic segments of each diblock arm made from 

polycaprolactone (PCL, a polyester with five methylene groups between ester groups) and PEO.  

Each of the six arms was attached to one of the terminal carbon atoms of diethylether.  Using the 

OPLS force field [68,199] (much like the work reported here) and the SPC [200] water model, 

they studied 13 arm length variants, each with long simulations (200 ns) at 300 K, and were able 
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to establish several important scaling relationships.  In their simulations, they observed that the 

hydrophobic material is densely packed and excludes both water and the hydrophilic material 

(i.e., strongly segregated, or phase separated), with a well-defined boundary between the 

hydrophobic material and water.  Also, the PEO is highly mobile and adopts disordered 

conformations, and it is well solvated.  If the PEO segments are short, the densely packed 

hydrophobic region is somewhat solvent-exposed.  However, as the length of the PEO segments 

is increased, the fractional coverage of the hydrophobic core by PEO increases, providing 

“protection” from water, leading them to suggest that sufficiently long PEO segments might 

inhibit aggregation in solutions of star copolymers at higher concentrations.   

Whereas the work of Huynh et al. focused on the varying the polymer chain length for a 

single set of hydrophobic and hydrophilic materials at one temperature, the main goal of this 

work is to investigate the effect on diblock star polymer structure, stability, and kinetics of 

changes in the hydrophobic region over a range of temperatures.  This work examines three 

different polymers for the construction of the hydrophobic region of each diblock arm: polylactic 

acid (PLA), polyvalerolactone (PVL) and polyethylene (PE).  These differ in the amount of ester 

versus alkane content, with PLA being the most rich in ester functional groups and the least rich 

in alkane; and PE being the least rich in ester (having none), and most rich in alkane.  The alkane 

component provides flexibility as well as hydrophobicity due to its nonpolar nature.  Ester 

groups, in contrast, have an effective charge distribution that produces relatively strong 

electrostatic interactions, and the hydrophobicity of ester-rich polymers is due to their stronger 

attraction to other ester groups than to water, causing them to “phase separate” from water, as the 

ester-rich condensate is more stable than water-solvated conformations.  We note that PVL is 
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very similar to the polycaprolactone (PCL) studied by Huynh et al.[63], having four methylene 

groups between ester groups, one less than PCL.    

The star polymers studied in this work have arms that are bound to a small adamantane 

junction.  Star polymers with an adamantane junction have actually been synthesized, as reported 

by Huang et al. [63].  The star polymers they prepared had four arms, compared with our 16, and 

theirs consisted of different polymeric materials, including styrenes and methacrylates.  The four 

arms on their star polymers were not copolymers, and they were much longer than the ones we 

have simulated.  We wish to emphasize at the outset, however, that our study is not meant to be 

about any particular adamantane-based star polymer.  We are using this type of junction simply 

to generate a model that can be determined to exhibit bulk-like behavior at a quantifiable 

distance from its center, and will therefore be useful to help understand much larger star 

polymers of a similar composition.         

This study makes use of fixed charge force fields, where a single charge model is used 

regardless of the environment in which an atom is situated.  This is clearly an approximation 

since, from the physics of the situation, one would expect electronic polarization for a molecule 

that depends in degree upon its environment.  Even simple reaction field theory [63], for 

example, predicts that the surrounding solvent causes an enhancement of the polarization of a 

molecule that depends on the dielectric constant of the solvent. One might reasonably expect, 

therefore, that the appropriate charge model to use for an ester surrounded by water would be 

different than for one surrounded by alkane moieties or other ester groups.  Therefore, 

understanding the structure and energetics of diblock star polymers might imply a need for, at 

least, polarizable force fields [201,202,203,204,205,206].  However, the development and 

validation of these force fields is currently an evolving field and their computational cost is still 
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significantly greater than that of fixed charge force fields.  Therefore, fixed charge force fields 

are still a good starting point for the study these types of molecular systems, pending the 

availability, validation and improved performance of more sophisticated treatments.  

Additionally, as outlined in the chapters above, extensive and successful work has been done in 

the application of fixed-charge force fields to biopolymers. 

Since the use of fixed charge force fields raises questions about the quality of the balance 

of the intra- and inter-component interactions among the three types of components of these 

systems (hydrophobic polymeric material, hydrophilic polymeric material, and water), this work 

examines the star polymer behavior as a function of temperature.  Behavior in the simulations 

that is seen to persist over a wide temperature range under physiological conditions is more 

likely to be predictive than behavior that is very sensitive to temperature near physiological 

conditions.  Also, studying the temperature-dependent behavior of star polymer structure and 

kinetics will provide a point of comparison with similar changes in bulk polymeric material 

properties that occur at glass transition and melting temperatures. 

This chapter is structured as follows:  Section 2 describes our methods, including a 

description of the molecular systems and the force fields and methods used to prepare, 

equilibrate and simulate them, as well as the types of analyses performed to determine structural, 

thermodynamic, and kinetic properties.  Section 3 presents results, and Section 4 is a discussion 

of these results as well as predictions to be experimentally tested.  Finally, Section 5 presents 

general conclusions, and also discusses further possible implications of this work for the design 

of star diblock copolymers for drug delivery. 

5.2 Methods 

5.2.1 Molecular Systems 
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Each of the star polymer systems was prepared by connecting 16 linear diblock 

copolymer arms to an adamantane junction.  The carbon atoms of adamantane, C10H16, have a 

rigid 10-atom diamond-lattice structure (Figure 5.1a).  The 16 sites that are hydrogen atoms in 

adamantane were used as the connection sites for the hydrophobic part of each diblock arm.  For 

each star system, the hydrophobic part of each arm was then connected to a short chain of six 

polyethylene oxide units.  The first star polymeric system consisted of 16 arms each with sixteen 

monomeric units of L-lactic acid (LA=-C(HCH3)-CO-O-), a linker methylene unit (-CH2-), then 

six units of ethylene oxide (EO=-CH2-O-CH2-), the last of which was terminated with a 

hydrogen atom to form a terminal methyl group.  This system can also be described as A[LA16-

CH2-EO6-H]16.  The methylene group was included to link the PLA appropriately to the PEO.  

Each adamantane carbon is bonded to the stereocenter carbon of the first lactic acid unit in either 

one or two arms.  This system will later be referred to as the polylactic acid (PLA) star polymer.  

The second type of star polymer system was constructed using eight units of delta-valerolactone 

(VL=- CH2-CH2-O-CO-CH2-CH2-) for the hydrophobic part of the arm, followed, as before, with 

six units of ethylene oxide terminated with a methyl group.  This system is described as A[VL8- 

EO6-H]16, and will be referred to as the polyvalerolactone (PVL) star polymer.  The third type of 

star polymer system was constructed using 12 units of ethylene (E=-CH2-CH2-; i.e., an alkane 

chain of 24 carbon atoms) for the hydrophobic part of the arm, followed with six units of 

ethylene oxide terminated with a methyl group.  This system is described as A[E12-EO6-H]16, and 

will be referred to as the polyethylene (PE) star polymer.   
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Figure 5.1: Schematic representations of star polymer construction for this study.  a) The adamantane junction 

showing the frame of 10 carbon atoms, four of which support the attachment of one arm and six of which support 

two arms.  b) A fully extended 16-arm star polymer with arms attached to the adamantane junction; hydrophobic 

portions of the diblock arms are in different colors, the hydrophilic portions are all colored light brown.  c) A 

representative “open” conformation produced after a small amount of simulation in the vacuum phase.  d) A 

solvated structure.  These figures are not drawn to the same scale; see the text for relative sizes. 

As mentioned above, these systems are identical in composition except for the 

hydrophobic regions, and the variation was designed to span range of polar vs. nonpolar 

character, ester vs. alkane content, and torsional flexibility.  The lengths of the hydrophobic 

segments in each of the three star polymers were chosen to yield approximately equal arm 

lengths.  The molecular systems were built with arms in a fully extended state (Figure 5.1b) and 

their length is noted in Table 5.1.  The amount of this length due to the PEO part of each arm is 

approximately 21 Å. 
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Table 5.1: Summary of star polymer systems studied.  Core volume is used to derive scaling factors that allow 

comparison among systems (see text).   

Name System Approx. Extended Arm 

Length, Å 

Number 

Atoms 

Number 

Water 

Core Volume, 

Å
3 

PLA A[LA16-CH2-EO6-H]16 67 3050 45377 5860 

PVL A[VL8- EO6-H]16 78 2618 45702 4650 

PE A[E12-EO6-H]16 50 1850 46115 2432 

 

5.2.2 Force Field 

The force fields used for these simulations were mainly the OPLS-AA (all atom) force 

field [68] but with a number of exceptions.  For adamantane, parameters similar to those for 

cyclohexane were used, but with the improved parameters of Price et al. [199] for the alkane 

torsion angle energy expressions.  For the linkage of the adamantane to the hydrophobic chains 

and for polyethylene segments, standard alkane parameters were used with the same improved 

torsion expressions.  OPLS-AA parameters for esters (the polylactic acid and polyvalerolactone 

star polymers) were obtained from the same reference [199].  

Although most of the OPLS-AA force field parameters for esters were readily available, 

polylactic acid, an alpha-polyester, required some parameters that had not been published.  These 

relate to the torsional expressions for sites along the backbone of the PLA polymer.  Parameters 

for the CT-C-OS-CT torsion exist [199], but not for C-OS-CT-C or OS-CT-C-OS.  In OPLS-AA 

notation, C represents a carbonyl carbon; OS, an alkoxy oxygen in an ester; and CT, a generic 

alkane-like carbon.  For the missing torsional parameters we substituted those for C-OS-CT-CT 

and CT-CT-C-OS torsions, respectively, since the middle bond in each case has the same 

character and multiplicity.  Because of its commercial importance, recent efforts [207] have 

attempted to develop a better OPLS-like parameter set for polylactic acid simulations.  These 

efforts have included extensive fitting to bulk properties of PLA, such as glass transition 



136 

 

temperatures, and resulted in functional forms that are more complex than the ones used in this 

work.  It is not clear whether such a potential would improve the model accuracy in the context 

of a star polymer in water. 

Because of its importance for numerous applications ranging from use as a polymeric 

solvent in batteries to improving the solubility of pharmaceuticals, a considerable amount of 

effort [208,209,210,211,212,213,214] has been spent to develop and improve force field 

parameters for polyethylene oxide (PEO), also known as polyethylene glycol (PEG).  These 

efforts usually start with quantum chemical studies of a simple commercially available dimer of 

ethylene oxide, 1,2-dimethoxyethane (DME), for which a great deal of reliable experimental data 

[215,216] exist that are useful for guiding and validating force field efforts.  It has turned out to 

be particularly difficult for a force field model to yield the correct conformer populations for 

bulk liquid DME, available from the analysis of Raman spectra [215], where the gauche 

conformation of the central O-C-C-O torsion appears to be unusually stable relative to, say, that 

of butane, a phenomenon known as the “gauche effect.”  The work of Anderson and Wilson 

[209] sought to produce a DME force field that improved upon both OPLS-AA and the potential 

of Smith, et al. [210,211], with respect to these conformer populations.  They employed higher 

quality quantum calculations than had been used in previous work to produce torsional energy 

maps for the three torsion angles involving the six heavy atoms of DME.  Then, using the OPLS-

AA charges, Lennard-Jones, bond and angle parameters, they refitted only the C-C-O-C and the 

O-C-C-O torsional parameter to best reproduce the quantum potential energy surface.  This 

resulted in a substantial improvement in the conformer populations in bulk DME over previous 

implementations. 



137 

 

One of our concerns with the resulting Anderson-Wilson DME force field, however, was 

the possibility that it was insufficiently polarized to represent PEO in an aqueous environment.  

Earlier work [217,218] has shown that charges based on a solvent-polarized wave function can 

produce better solvation results.  Using an approach very similar to that of Anderson and Wilson, 

we produced a potential for the star polymer simulations that we felt might represent the 

polarization of DME in water.  Briefly, we generated an optimized structure for DME in the ttt 

conformation using an MP2 level of theory, but with a polarizable continuum [219] model 

(PCM) to represent an aqueous environment.  The resulting charge density was used to evaluate 

the electrostatic potential (ESP) around the molecule, which was then fitted using point charges 

at the nuclear sites.  After symmetrization, these charges were 0.003/0.068 for C/H of the 

terminal methyl groups, 0.142/0.049 for the C/H of the methylene group, and -0.447 for the 

oxygen.  (The unit of charge is the proton).  This is in contrast to the charges 0.110/0.030, 

0.140/0.030 and -0.400, respectively, used in OPLS-AA and in the Anderson-Wilson potential.  

Then, using these charges along with the OPLS-AA parameters for the bond and Lennard-Jones 

expressions, the C-C-O-C and the O-C-C-O torsional expressions were fitted to best reproduce a 

gas phase torsional energy map of a quality (MP2) similar to that used by Anderson and Wilson.   

The results are shown in Table 5.2, where one can see that the torsional fitting parameters 

are very sensitive to the charge model, even though in OPLS the 1-4 electrostatic interactions are 

scaled by a factor of 0.5.  Conformational analysis using the resulting potential for liquid NpT 

simulations of bulk DME at 298 K and 1 atm is shown in Table 5.3, along with other published 

results.  One can see that the new model, polarized appropriately for solvation by water, still 

does fairly well at obtaining the conformer populations in bulk DME, slightly overpopulating the 
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tgt conformer, underpopulating the tgg’ conformer (like the other force fields listed), and doing 

slightly worse with population of the less prevalent ttt conformer.   

Table 5.2: Parameters for the torsional energy expressions involving backbone atoms in DME.  Values, in units of 

kcal/mol, are used in the expression E()=(V1/2)(1+cos())+(V2/2)(1-cos(2))+(V3/2)(1+cos(3))+(V4/2)(1-

cos(4)).  DMEFF refers to the work of Anderson and Wilson
 
(28); IBM refers to the current work.   

Torsion Force field V1 V2 V3 V4 

O-C-C-O DMEFF 2.8198 -2.5606 0.8216 -0.9203 

C-O-C-C DMEFF 1.6678 -0.5653 -0.0033 -0.2931 

O-C-C-O IBM 1.6224 -2.4022 0.2672 -0.1864 

C-O-C-C IBM 0.2770 -0.0086 0.2630 0.0178 

 

Table 5.3:  Populations of conformers of DME in bulk liquid given by different force fields and by experiment.  

OPLS-AA and DMEFF data is from Anderson and Wilson [209]; the column labeled SJY is from Smith, Jaffe, and 

Yoon [212]; Raman data are from Goutev et al. [215]. 

 

Conformation OPLS-AA SJY DMEFF IBM Raman 

ttt 13.5 18 15.4 5 12 

tgt 50.3 45 51 55 42 

ttg 5.2 9 5.1 2 4 

tgg 13 8 7.8 10 9 

tgg' 14.6 17 18.4 24 33 

ggg 1.4  0.4 1  

ggg' 1.4  1.2 2  

gg'g 0.1  0.3 0  

gtg 0.3  0.2 0  

gtg' 0.2  0.2 0  

Total 100 97 100 99 100 

 

The charges actually used on the PEO segments of the star polymers were 0.142/0.049 

for the methylene group and -0.48 for the oxygen, the final oxygen charge being more negative 

by 0.08 than used in OPLS-AA.  Admittedly, the change in charge model relative to OPLS-AA 

is rather small.  The improvement of conformer populations is quite likely due to the fitting of 

torsional energy parameters to high quality quantum chemical results.  Further testing of this 

potential should be done to assess its applicability in other contexts. 

The water model used was TIP4P-Ew, developed [86] as a variant of TIP4P [84], and 

tuned for use in the context of Ewald treatments of the long range electrostatic interactions.  



139 

 

Since these data were used in the parameterization of the model, the TIP4P-Ew potential 

accurately reproduces pure liquid water density and heat of vaporization data over a broad 

temperature range.  However, the model also reproduces structural properties such as the radial 

distribution function and kinetic properties such as the self-diffusion coefficient over a broad 

temperature range, and these were not used in the parameterization.  In addition to being 

developed for use in the context of Ewald models, the fitting of the TIP4P-Ew parameters to 

experimental heat of vaporization data took account of the difference in energy between an 

unpolarized gas phase water molecule and one polarized to the extent implied by the fixed 

charges of the model, also known as the electronic polarization cost.  Consideration of 

polarization cost in the fitting was also done in the development of TIP4P/2005 [85], but it was 

not done in the development of TIP4P [84].  Treating the polarization cost has lead to substantial 

improvement in the accuracy of the structural, thermodynamic, and kinetic properties of both of 

these models [85,86]. 

5.2.3 Simulations 

Structural models were prepared for all three star polymer molecules using locally 

developed software.  The models are simply the atomic Cartesian coordinates for each atomic 

site of the molecules constructed with each polymeric arm in a fully extended state (see Figure 

5.1).  These molecular structures have end-to-end distances as large as 160 Å (see Table 5.1).  

Force field parameters were assigned, also using locally developed software, and input files were 

prepared for the LAMMPS simulation package [69].  Short structural optimizations were 

performed followed by short simulations on these molecules without solvent, i.e., in the “gas 

phase”, during which the molecules were allowed to partially collapse into more compact but 
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still somewhat open structures.  These partially collapsed structures had end-to-end distances 

ranging from 48 Å (PVL) to 58 Å (PLA). 

A cubic simulation cell of 46,656 TIP4P-Ew water molecules was prepared and 

equilibrated using locally developed software and a protocol previously described [220] with a 

control temperature of 300 K and an external pressure of 1 atm.  A set of particle coordinates 

was obtained from the resulting simulation (cell edge length 111.9453 Å) representing an 

instantaneous density of 0.9949 g/cm
3
, in excellent agreement with experimental values (at a 

temperature of 298 K and a pressure of 1 atm, the mean density of water using the TIP4P-Ew 

water model [86] is 0.9954 g/cm
3
; the corresponding experimental value is 0.99716 g/cm

3
).   

The starting conformation for the simulations of solvated star polymers was made as 

follows:  (1) The coordinates of the star polymer sites were translated so that the center of 

geometry was at the center of the cubic simulation cell from the water equilibration simulation. 

(2) For each water molecule, the smallest distance from any of its three sites to any of the sites 

on the star polymer was computed. (3) Using these distances, water molecules were removed 

from the simulation, starting with the one closest to the star polymer and then the one next 

closest and so on, until the total mass of removed water molecules first exceeded the total mass 

of the star polymer.  Between 541 (PE system) and 1279 (PLA system) water molecules were 

removed by this procedure.  This process produced a set of three systems, one for each star 

polymer.  By construction, each of these systems had the same volume and very nearly the same 

mass, and hence the same mass density, as that of water.  With the closest water molecules 

removed in this way, dynamical simulations could be started without any additional preparation 

(see Figure 5.1). 
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Most of the production simulations were performed using a version of the LAMMPS 

software [69] dated July 7, 2009.  The LAMMPS software performs and scales well on 

massively parallel computers for molecular systems of the size and type studied here.  Molecular 

dynamics simulations were performed on an IBM BlueGene/L supercomputer and most of the 

analysis of the resulting trajectory data was performed on a cluster of IBM AIX workstations. 

All equilibration and production simulations were performed using the NVT ensemble, 

with thermal control implemented in LAMMPS using a Nosé-Hoover extended Lagrangian 

procedure, with a fictitious mass set so as to establish a fluctuation period [221] of approximately 

100 fs in the thermostat variable, known as the thermostat damping factor in LAMMPS.  The 

dynamical integration scheme was velocity-Verlet [100] with a time step size of 1 fs.  All bond 

lengths involving hydrogen, as well as the H-O-H angle for the TIP4P-Ew water, were 

constrained using a SHAKE procedure [103] to guarantee that bond length constraints were 

satisfied to a tolerance of 10
-5 

Å.  Lennard-Jones interactions and direct space electrostatic 

interactions were truncated at 9 Å.  A tail correction for the part of the Lennard-Jones potential 

beyond this cutoff was included in the energy and pressure computation.  Electrostatic 

interactions were evaluated with a particle-particle-particle mesh (PPPM) procedure [99] with an 

accuracy parameter (10
-5

) that resulted in a 3D grid of 120-by-120-by-120.  In accordance with 

the OPLS potential, neither Coulomb nor Lennard-Jones interactions are evaluated for particle 

pairs that are 1-2 and 1-3 interactions, and both of these types of interactions are scaled by a 

factor of 0.5 for 1-4 interactions.  Geometric combining rules were used to establish the Lennard-

Jones parameters. 

Thermal equilibration was performed for each of these systems at four different 

temperatures: 300 K, 350 K, 400 K and 450 K.  Some of these equilibration simulations were as 
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long as 50 ns.  During the thermal equilibration phase for each solvated star polymer system, the 

star polymer molecules collapsed slightly more, and for each system, the edge length of the 

simulation cell was greater than twice the linear dimension of the star polymer molecule.  Under 

the minimum image convention, this guarantees that the closest image of each site in the star 

polymer to any other site is from the same image, thereby preventing the apparent direct 

interaction between copies of the star polymer molecule in different periodic images.  Production 

runs for these three solvated molecular systems at the four temperatures were at least 20 ns. 

5.2.4 Analysis 

During the production phase of the simulations, solute and solvent coordinates were 

saved to disk for analysis at intervals of 10 ps, resulting in at least 2,000 sets of coordinates for 

each of the three molecules and at each of the four temperatures.  Since in most cases these 

represented highly correlated data, detailed analysis was performed only on one-fourth of this 

data, on coordinates spaced at intervals of 40 ps.  The analysis consisted of the calculation of 

several structural observables as well as a Voronoi analysis.  The structural observables included 

such things as maximum end-to-end distance, spherically averaged mass density, and molecular 

shape descriptors [222] derived from the eigenvalues of the gyration tensor such as radius of 

gyration, asphericity and anisotropy.  Notation and formulae related to geometric shape 

descriptors do not appear to be standardized.  We follow Theodorou and Suter [222] where the 

elements of the gyration tensor are given by  ,,, )/1( ii i rrNS   where the sum is over the N 

sites ri and α and β refer to Cartesian components (x, y or z); ri is measured relative to the center 

of geometry where  
i

ir 0, .  The eigenvalues of S are denoted λx, λy, and λz.  The radius of 

gyration is defined as zyxgR  2)(  and when ordered, zyx   .  Asphericity is 
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defined as )(5.0 yxzb   .  Acylindricity is defined as xyc   .  Shape anisotropy is 

4222 )/()75.0( gRcb  .  We report 2  and call it anisotropy.  Huynh, et al. [223] report this as 

well but call it asphericity. 

In order to characterize intramolecular chain structure and dynamics without the effect of 

overall star polymer molecular rotation, a molecule-centered reference frame was defined with 

an origin and orientation determined by the coordinates of the sites of the relatively rigid 

adamantane core.  For each coordinate set, the atomic site coordinates as well as the coordinates 

of an orientational unit vector associated with each monomeric unit of the star polymer were 

measured with respect to the molecule-centered reference frame. 

Voronoi analyses were also performed for each set of coordinates. A Voronoi analysis 

[224,225] constructs a set of polyhedra, one polyhedron around each atomic site of the system 

(all water sites plus all star polymer sites).  These polyhedra collectively fill all space of the 

simulation cell, and each one encloses a volume of space that is closer to its associated site than 

to any other site.  Voronoi polyhedra faces that are shared by two polyhedra consist of points that 

are equidistant to the two sites associated with the polyhedra.  Similarly, points on a polyhedron 

edge are equidistant to three such sites, and each polyhedron vertex is equidistant to four.  

Voronoi analysis uses only the Cartesian coordinates of the atomic sites in the simulation, 

without any knowledge of the molecular identity, chemical nature, or bond connectivity of the 

material.  However, all of this information manifests itself in the Voronoi analysis through the 

resulting distribution in the number of faces, the facial shapes and areas, polyhedral volumes, etc.  

For our purposes, we partitioned the sites into different classes and used the Voronoi polyhedra 

associated with each class to compute a volume for the class, and the interfacial surface area 

shared between pairs of classes.  The interface between two classes consists of the union of all 
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Voronoi faces that are shared by two polyhedra where one polyhedron is associated with one 

class and the other polyhedron is associated with the other class.  For example, by establishing 

three classes that we associate with water, hydrophobic, and hydrophilic sites, we can compute 

the total volume occupied by each class and the interfacial surface area between the hydrophobic 

and hydrophilic material, as well as between the water and the hydrophilic material.  This 

technique provides a somewhat more general alternative to the solvent accessible surface area 

metric [226] that is often used. 

An important issue for the use of star polymeric materials for drug delivery relates to the 

amount of water in the interior of the polymer, specifically the hydrophobic region.  Water 

content potentially affects the release rate of the drug as well as the rate and mode of degradation 

of the polymer itself.  Important metrics therefore include the thermal and compositional 

dependence of the amount of water, its penetration depth, its diffusion within the star polymer, 

and the exchange rate of water into and out of (e.g., water lifetime) the hydrophobic regions.  

The difficulties of measuring this in simulations begins with how one should define what 

molecules are actually in the hydrophobic region, since there is really not a well-defined 

interface between components when examined at a molecular level.    

The issue of water penetration was explored also using Voronoi analysis, since it 

provides a useful way of determining if two molecules are neighbors: two sites are Voronoi 

neighbors if their Voronoi polyhedra share a face.  A cluster analysis was performed on the water 

molecule sites in each coordinate set using the neighbor list developed by the Voronoi analysis.  

Two water sites were defined as being in the same water cluster if they were Voronoi neighbors.  

This clustering procedure partitions the water molecules into one or more sets, each of which is a 

contiguous water cluster, with the largest, of course, representing the bulk solvent.  Other 
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clusters of water molecules, if they exist, are, by construction, not neighbors of any of the bulk 

water molecules, and, so, are surrounded only by star polymer sites.  We designate such clusters 

as interior clusters, as distinguished from the bulk cluster.  With this approach, information can 

be collected about the number, size and shape distribution of such interior water clusters, the 

nature of their environment (e.g., the amount of the water cluster’s surface area that is in contact 

with hydrophobic vs. hydrophilic regions of the star polymer), and their evolution and lifetime 

within the star polymer.  By computing the closest distance from each oxygen site in an interior 

water molecule to the oxygen sites in the bulk water, one can get a sense of the penetration depth 

into the star polymer of the interior absorbed water.     

In general and at most sampling rates, observables computed from molecular dynamics 

simulation data are highly correlated.  In several instances where statistical uncertainty is 

reported, correlation in the data was taken into account by computing the fluctuation 

autocorrelation function for the observable of interest.  The correlation time was taken as the area 

under this function.  Since this function itself is subject to uncertainty and becomes more noisy 

with greater lag times, it is integrated only up to the point where it first goes negative, giving an 

estimate of the correlation time, τc. The uncertainty (standard deviation of the mean) in an 

observable is then given as the root-mean-square deviation in that observable times the square 

root of 2τc/T, where T is the simulation time over which the observable is averaged and T/2τc is 

the effective number of uncorrelated samples.  There is always some danger in computing such 

correlation times and resulting uncertainty estimates, since for insufficiently long simulations the 

true magnitude and temporal variation of the fluctuation of a signal is not observed and, hence, 

both the standard deviation and the correlation time are underestimated, resulting in an 

artificially small uncertainty which makes the result appear to be more statistically significant 
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than it really is.  Uncertainties in the numbers of rare events observed, such as instances of water 

penetrating into the hydrophobic regions of the star polymers, were assumed to be the square 

root of the number of observations, assuming these are governed by Poisson statistics. 

5.3 Results 

Renderings of representative configurations of the three molecular systems at the lowest 

(300 K) and highest (450 K) temperatures studied are shown in Figures 5.2-5.4.  For the PLA 

and PVL molecules, the images do not convey much difference between the high and low 

temperature, nor even between the PLA and PVL star polymers.  The PE system, on the other 

hand, shows a considerable amount of ordered structure, even at high temperature.  Animated 

models (videos) of these molecules suggest that the PEO regions are very mobile, but the 

hydrophobic regions are very rigid (crystalline or glassy) on the 20 ns time scale of these 

simulations. 
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Figure 5.2:  Renderings of representative configurations of the PLA star polymer at 300 K (left) and at 450 K (right).  

The hydrophobic region of each of the 16 arms is shown in a different color.  The hydrophilic (PEO) terminal region 

of each arm is colored light brown. 

 

Figure 5.3:  Renderings of representative configurations of the PVL star polymer at 300 K (left) and at 450 K (right), 

colored as in Figure 5.1.  The hydrophilic (PEO) terminal region of each arm is colored light brown. 

 

Figure 5.4:  Renderings of representative configurations of the PE star polymer at 300 K (left) and at 450 K (right), 

colored as in Figure 5.2. 
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Radius of gyration (Rg) data are shown in Figure 5.5.  For each molecule and at each 

temperature, the average radius of gyration was computed using the entire star polymer (filled 

symbols and solid lines) as well as without consideration of the hydrophilic part, in order to 

characterize the spatial extent of the hydrophobic core. From the figure, one can see that there is 

very little temperature dependence except for the PE system, which shows a significant drop in 

Rg between 350 K and 400 K, suggesting a transition to a more compact state.  Figure 5.6 shows 

the thermal dependence of the magnitude of the fluctuations in Rg.  The general increase with 

temperature indicates a gradual increase in the compressibility.  It is notable that even though 

there is a discontinuous change in Rg for the PE star, there is no such behavior in the magnitude 

of the fluctuation in this quantity.  Figure 5.7 shows the thermal dependence of the anisotropy.  

This dimensionless metric can range from zero (spherical) to unity (long rods).  The change in 

anisotropy for the PE star in going from 350 K to 400 K indicates a change from an elongated to 

a more spherical shape. 
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Figure 5.5:  Radius of gyration, computed from the gyration tensor, for each star polymer at each of four 

temperatures.  Symbols represent PLA (diamonds), PVL (triangles), and PE (squares).  Solid symbols and solid lines 

represent the radius of gyration for the entire star polymer; open symbols and dashed lines represent that of just the 

hydrophobic material.  Uncertainty estimates ± two standard deviations are not shown but are approximately the size 

of the symbols, usually 0.1Å or less.   

 

Figure 5.6:  Root mean square deviation in Rg.  Symbol and line type notation is the same as in Figure 5.5. 
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Figure 5.7:  Anisotropy.  Uncertainty estimates are ±2 standard deviations. 

The behavior of some of these star polymers at the lowest temperature shows some 

anomaly in Rg (PLA), its fluctuation (PVL and the hydrophobic core of PLA), and the anisotropy 

(PLA).  This may be an indication that at 300 K the relaxation times and correlation times may 

be so long for PLA and PVL that thorough sampling is difficult to achieve over the 20 ns period 

of the production simulations.  Other observables suggest this as well.  The uncertainty estimates 

are larger at these temperatures, but might still be underestimated.  The question thus arises as to 

whether these simulations were sufficiently long for adequate sampling, particularly given that 

those in the preceding study of Huynh et al. were at least 200 ns per star polymer system at 300 

K.  Although we experienced difficulty at that temperature with sampling some of the 

observables for the PLA and PVL star polymers over the course of the 20 ns production 

simulation, Huynh et al. noted that most of their observables were stable after about 15 ns of 

sampling.  We feel that at our higher temperatures (350 K, 400 K and 450 K), we are able to 

sample adequately due to the shorter correlation times at these temperatures.   
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The spherically averaged mass density at 350 K, as a function of distance from the center 

of mass of the adamantane, is shown for the three molecules in Figures 5.8-5.10.  These figures 

illustrate the contribution to the total mass density from various components: adamantane, the 

hydrophobic material, the hydrophilic material, and water.  These figures indicate that close to 

the adamantane the material is highly structured.  In fact, having 16 polymeric arms attached to 

an adamantane core produces a significant amount of local strain in the model that persists along 

each arm until the density decreases enough for more favorable and random chain conformations 

to be adopted.  These graphs show very little thermal dependence (data not shown for other 

temperatures), except for a gradual smearing of some of the features of the hydrophobic material.  

One can see that the hydrophilic material adopts a broad featureless distribution in each case.  

The figures also appear to suggest that there are rather diffuse boundaries between materials, 

with considerable interpenetration of water and hydrophilic material into the hydrophobic 

material.  However, further analysis indicates this is an illusion created by the spherical 

averaging process when the hydrophobic core is highly nonspherical (PE) or has a rough surface 

with many grooves and valleys (PLA and PVL) that allow water to get relatively close to the 

adamantane core without actually penetrating into the hydrophobic core material itself. 
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Figure 5.8:  Orientationally averaged mass density for the PLA star polymer at 350 K as a function of distance from 

the center of mass of the adamantane.  The curves represent contributions to the total mass density (cyan) from the 

adamantane (red), from the hydrophobic material (black), from the hydrophilic PEO (purple), and from water (blue). 

 

Figure 5.9:  Orientationally averaged mass density for the PVL star polymer at 350 K.  Coloring scheme is the same 

as for Figure 5.8. 
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Figure 5.10:  Orientationally averaged mass density for the PE star polymer at 350 K.  Coloring scheme is the same 

as for Figure 5.8.  In comparing this figure with Figures 5.8 and 5.9, one should note that the range of the x-axis is 

different. 

The mass density plot for the PE polymer (Figure 5.10) exhibits a feature not seen in the 

other two polymers:  there is a much longer and more slowly decaying curve for the hydrophobic 

material.  Whereas the mass density due to hydrophobic material falls from 0.5 g/cm
3 

to 0.1 

g/cm
3
 over a distance of 2.9 Å for the PLA and 3.2 Å for the PVL, this decrease occurs over a 

distance of 6.4 Å for the PE polymer.  This is a manifestation of the crystalline and cylindrical 

nature of this polymer at 350 K, as indicated visually (Figure 5.4) and through other structural 

observables. 

The structure in the mass density graphs can be resolved by monomeric unit, and this is 

shown for PLA at 350 K in Figure 5.11. The first monomeric units of LA along each of the 16 

arms produce three peaks in this graph (shown in black) near a distance of about 5 Å; the second 

units of LA along the 16 arms produce peaks near 7 Å (shown in red), and so on.  As one moves 

out along the chains, the distributions become less structured and broader.  Using this graph, one 



154 

 

can determine which monomeric units are responsible for the peaks in the total mass density.  

For example, the peak at 10.7 Å in black in Figure 5.8 (PLA) is due to the positioning of the 

third LA units along the arms (shown in blue in Figure 5.11).  The peak at 11.7 Å is due to the 

fourth (shown in purple) and fifth (shown in magenta), and the soft peak at 13.3 Å is due to the 

fifth (shown in magenta) and sixth.  LA units farther than the fourth or fifth, and out to the last 

(16th), are behaving similarly and probably produce a density and chain packing at distances 

larger than about 12.5 Å that is more representative of what might be seen in even larger star 

polymers.  In fact, even the fourth unit (shown in purple) contributes significant mass density at 

distances closer to the adamantane than the third (shown in blue), suggesting an ability to pack 

more closely.  The fourth and fifth units along the chains are, therefore, transitional between the 

highly structured and more random units.  Similar analysis identifies the transitional hydrophobic 

units for the other star polymers as the second for PVL and the third and fourth for PE (the PVL 

units are much larger and floppier than the PLA and PE units). 
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Figure 5.11:  Orientationally averaged mass density contribution from hydrophobic material in the PLA star polymer 

at 350 K resolved by contribution from different monomeric units.  Each color corresponds to the mass density 

contributed by a different set of 16 lactic acid monomer units that are all at the same position along the arm as 

measured from the adamantane connection.  The black curve represents mass density from the 16 lactic acid units 

that are directly connected to the adamantane. 

Orientational autocorrelation functions for individual repeat units for each star polymer at 

350 K are shown in Figure 5.12.  These were computed as follows.  First, a local orientational 

unit vector (u) was defined for each monomeric unit on each arm of each star polymer.  These 

vectors were directed between specific pairs of atomic sites on each monomeric unit.  For the 

PLA and PVL, the vectors were directed between an alkoxy oxygen site and the first carbon site 

immediately opposite the nearest carbonyl group.  For PE and PEO, the vectors were directed 

between pairs of adjacent (bonded) carbon sites.  Only three vectors were selected within the six-

unit PEO part of the chain.  Second, for each saved set of coordinates, these vectors were 

measured and projected from the lab frame onto the molecule-centered reference frame.  Third, 

the time evolution of these vectors in the molecule frame was determined at 40 ps resolution over 

the 20 ns of the production simulations, and then an autocorrelation function (<u(0)•u(t)>) was 
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computed for each monomeric unit.  Next, groups of 16 of these functions that correspond to 

monomeric units at the same position along the star polymer arms were averaged.  There is, 

therefore, a set of curves (19 for PLA, 11 for PVL, and 15 for PE) for each star polymer that 

shows different rates of decay, corresponding to the rate of loss of orientational memory for 

monomer units at various positions along each arm.  Curves that correspond to monomeric units 

close to the adamantane do not decay at all, and the curves that correspond to the most distant 

PEO group decay very rapidly.  (In Figure 5.12, approximately half of these curves are shown). 

 

Figure 5.12:  Orientational autocorrelation functions for monomeric units at 350 K for PLA (top), PVL (middle), 

and PE (bottom) star polymers.  Each curve represents an average of the 16 autocorrelation functions that 

correspond to monomeric units at the same distance along each arm.  Dot-dashed lines correspond to the transitional 

repeat units near the adamantane within the hydrophobic material.  Solid lines correspond to various other 

hydrophobic monomeric units.  Dashed lines correspond to hydrophilic PEO units.  Correlation functions decay 

more and more quickly as one moves farther out along each chain away from the adamantane.  For PLA (top) the 

lines refer to repeat units 2, 4*, 5*, 6, 8, 10, 12, 14, 16.  For PVL (middle) the lines refer to repeat units 1, 2*, 4, 6, 

8.  For PE (bottom) the lines refer to repeat units 2, 3*, 4*, 6, 8, 10, 12.  Asterisks indicate the repeat units to be 

transitional. 
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The curves in Figure 5.12 illustrate several interesting points.  First, the rate of decay in 

the correlation functions is nearly monotonic as one moves along each chain from the units 

closest to the adamantane outward.  Second, for each molecule there is a group of very slowly 

decaying curves that includes the transitional units (identified above, and shown in Figure 5.12 

with dot-dashed lines), and then a band of decaying curves that are closely spaced and sometimes 

overlapping that correspond to a more homogeneous temporal behavior of hydrophobic material 

outside of this transitional region.  Third, there are one or two units in the hydrophobic region 

nearest the PEO that have much faster decay than these, presumably because they are being 

“pulled” about by the more rapidly reorienting and solvated PEO units.  Finally, the PEO units 

(dashed lines in Figure 5.12) have the fastest decay of orientational correlation, with the slowest 

one of those corresponding to the ones “tethered” to the hydrophobic units.  These time 

correlation functions were computed at each of the four temperatures (not shown) and all graphs 

share these general features, but with correlation times becoming shorter with increasing 

temperature. 

The curves in Figure 5.12 also indicate that at 350 K the hydrophobic material is not 

reorienting on a 2 ns time scale for the PLA and PE, and the PVL core is behaving only slightly 

more fluid-like, suggesting that these cores are more like a solid (crystalline for PE, disordered 

and glassy for PLA and PVL) than a liquid.  In fact, the middle band of PE correlation times 

(bottom of Figure 5.12) shows no decay at all, and the structure appears to be rigid and 

crystalline (Figure 5.4).  Even though they do not decay much on a 2 ns timescale, the 

hydrophobic PVL correlation functions show faster decay than those of either PLA or PE, 

indicating that PVL could be somewhat more fluid-like than either the PLA or the PE polymers.  

This may be due to the alkane regions of the hydrophobic segments offering more flexibility than 
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what is available in the PLA, and the ester regions preventing the chain registration and 

alignment of the alkane segments that is seen to stabilize the crystalline structures of the PE. 

The Voronoi analysis was performed on coordinate sets at 40 ps temporal resolution, and 

interfacial surface areas between water, hydrophobic, and hydrophilic materials were measured 

and averaged for each star polymer at each temperature.  Figure 5.13 shows the interfacial area 

exposed by the hydrophobic material, which is the sum of the hydrophobic-water and 

hydrophobic-hydrophilic interfacial areas.  Except for the PLA star at 300 K, which might be 

exhibiting insufficient sampling as discussed above, these show a gradual increase with 

temperature probably related to the expansion seen in the fluctuations of the radius of gyration.  

Figure 5.14 shows the part of this that is due to the interface between the hydrophobic material 

and water.  These generally show an increase with temperature, except for PLA at 300 K, and a 

noticeable drop between 350 K and 400 K for the PE star, where it changed from an elongated 

structure to a more globular one.   
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Figure 5.13:  Total interfacial area of hydrophobic material (sum of hydrophobic-hydrophilic and hydrophobic-water 

interfacial areas) for the PLA (diamond), PVL (triangle), and PE (square) star polymers.  Uncertainty estimates are 

±2 standard deviations. 

 

Figure 5.14:  Interfacial area between hydrophobic material and water for the PLA (diamond), PVL (triangle), and 

PE (square) star polymers.  Uncertainty estimates are ±2 standard deviations. 
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It would make sense for some aspect of the PE star hydrophobic surface area to change 

during this structural change.  A decrease in the hydrophobic contact area with water (shown in 

Figure 5.14) makes sense, but the fact that the total surface area (Figure .13) did not change very 

much indicates that that the hydrophilic-hydrophobic interfacial area increased to compensate.  

Images of the PE star (Figure 5.4) suggest why this happened.  The elongated cylindrical PE 

structures seen at low temperature are very crystalline, organized into a cylindrical shape with all 

of the PEO at one end.  At higher temperatures where this structure gives way to a more globular 

shape, there is more opportunity for the hydrophilic PEO parts of the chains to come into contact 

with the hydrophobic parts, thereby simultaneously decreasing the water contact (Figure 5.14) 

and increasing the PEO contact (Figure 5.16) after the collapse.  The trend in hydrophobic 

surface areas seen in Figures 5.13 and 5.14, PLA>PVL>PE at all temperatures, is simply a 

reflection of the fact that these star polymers are of somewhat different sizes, simply because of 

the number and size of the repeat units in their hydrophobic regions (see Table 5.1).   

Figure 5.15 shows the total PEO interfacial area, which is the sum of the contact area 

with water and with the hydrophobic material.  The increase in PEO total surface area for the PE 

star in going from 350 K to 400 K can be understood as the dense PEO structure at the end of the 

cylindrical structures seen at low temperature (Figure 5.4) is broken up at higher temperatures, 

allowing more PEO to be exposed to water and to the hydrophobic PE in these more globular 

conformations.  However, other features of Figure 5.15 are rather surprising in that there is a 

general and significant decrease in PEO surface area with increasing temperature for each 

polymer, even for the PE on each side of the transition.  This decrease suggests that PEO may be 

aggregating with itself, decreasing contact with water and perhaps with hydrophobic material, 

and that this is somehow more pronounced at higher temperatures. 
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Figure 5.15:  Total interfacial area of hydrophilic material (sum of hydrophobic-hydrophilic and hydrophilic-water 

interfacial areas) for the PLA (diamond), PVL (triangle) and PE (square) star polymers.  Uncertainty estimates are 

±2 standard deviations. 

Figures 5.16 and 5.17 show the PEO-hydrophobic and PEO-water interfacial areas, 

respectively.  Contact between PEO and hydrophobic material actually increases or is relatively 

flat with temperature, but the contact with water decreases by even more, indicating a preference 

for PEO to attempt to phase separate from water at higher temperatures.  This rather surprising 

observation may be consistent with the fact that PEO-water mixtures exhibit a lower critical 

solution temperature (LCST) [227] wherein a PEO-water mixture can change from a single 

phase (miscibility) to a two-phase system with increasing temperature.  The possibility of this 

phenomenon being exhibited in star polymers, where it might be tunable by modifications of 

chain length, number of chains or the chemical nature and size of the hydrophobic region, is 

worthy of further experimental and theoretical investigation.  Figures 5.16 and 5.17 indicate that 

this tendency of PEO to self-associate is in competition with its tendency to associate with the 

hydrophobic material.  
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Figure 5.16:  Interfacial area between hydrophilic (PEO) and hydrophobic material for the PLA (diamond), PVL 

(triangle), and PE (square) star polymers.  Uncertainty estimates are ±2 standard deviations. 

 

Figure 5.17:  Interfacial area between hydrophilic (PEO) material and water for the PLA (diamond), PVL (triangle), 

and PE (square) star polymers.  Uncertainty estimates are ±2 standard deviations. 
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Also apparent from Figure 5.16 is the decrease at all temperatures in the tendency of PEO 

to cover the hydrophobic core as one goes from an ester-rich hydrophobic material (PLA) to a 

pure alkane hydrophobic material (PE), with PVL in between.  Recall that the length of the PEO 

region of each arm is the same across all three polymers, so differences between PLA, PVL, and 

PE star polymers in the PEO interfacial areas with water and with hydrophobic material seen in 

Figures 5.15-5.17 are not due simply to differences in the sizes of the hydrophobic regions as is 

the case in Figures 5.13 and .14.  Finally, regarding the numerical values of the PEO-

hydrophobic interfacial surface areas in Figure 5.16, it should be recognized that these include 

the areas from the region of connection where the PEO segment of each arm connects to the 

hydrophobic segment of that arm.  The contribution from these junctions varies considerably 

with chain orientation, but 35 Å
2
 is a reasonable approximation, suggesting that there is about 

560 (16*35) Å
2
 of the interfacial PEO-hydrophobic area that should not be considered to be in 

contact in the usual sense of a PEO chain laying against the hydrophobic material.  With this 

number subtracted from each of the values in Figure 5.16, and the result compared with the 

values in Figure 5.17, one sees that there is about 2.5 times more contact between PEO and water 

than between PEO and the hydrophobic region of the PLA star.  For the PVL star polymer this 

factor is about 3, and for the PE star it goes from over 4 at low temperatures to about 3 at high 

temperatures. 

Apparent from comparison of Figures 5.13 and 5.14 is that hydrophobic cores in these 

models are exposed to a great deal of water.  From 60% to 75% of the hydrophobic surface area 

is in contact with water, and this increases to 70% to 80% if account is made for the 

approximately 560 Å
2
 of junction regions that cannot be solvated.  This may be due to the fact 

that the PEO regions of the chains are relatively short, with only six PEO units.  However, from 
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comparison of Figures 5.15-5.17, as discussed above, one can see that given the choice between 

contact with water or with hydrophobic material, the PEO in our model has overwhelming 

preference for water contact.  A study of individual conformations reveals that the maximum 

contact area between one of the PEO segments and the hydrophobic region is approximately 

234Å
2
, including the junction region.  Therefore, a hypothetical fully coated hydrophobic region 

would produce about 3744 (16*234) Å
2
 of PEO-hydrophobic interfacial area with PEO segments 

of the length studied here.  Figure 5.16 shows significantly less than this amount at all 

temperatures and for all molecules.  Similarly, the maximum interfacial area between an 

extended PEO segment and water is approximately 450 Å
2
.  So, if all PEO segments were 

maximally solvated, the aggregate PEO-water interfacial area would be approximately 7200 Å
2
.  

Figure 5.17 shows that for each molecule and at all temperatures, the PEO-water interfacial area 

is a significant fraction of this “available” 7200 Å
2
.  Some of the deficit can be explained by 

PEO-PEO contact, including interchain contacts and intrachain contacts observed when a PEO 

segment adopts hairpin and coil conformations.  

Voronoi analysis allowed for the identification of water clusters that permeated into the 

interior of the star polymers.  The average number of interior water molecules per configuration 

for each star and at each temperature is shown in Figure 5.18.  Water penetration generally 

increases with temperature, but for the PLA showed a very large increase (almost six-fold) in 

going from 350 K to 400 K.  PLA is the most ester-rich of the star polymers studied, and this 

might explain its increased tendency to absorb water.  However, even for this polymer and at the 

highest temperatures, there are only about 2.5 water molecules in a typical star polymer, so water 

penetration is rather rare.   
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Figure 5.18:  Average number of interior water molecules and water molecule clusters per configuration in the PLA 

(diamond), PVL (triangle), and PE (square) star polymers.  The number of molecules is indicated with the solid lines 

and filled symbols; the number of clusters is indicated with dashed lines and open symbols.  Uncertainty estimates 

are ±1 standard deviation. 

The trend in the amount of interior water shown in Figure 5.18, PLA>PVL>PE, could be 

due to differences in the water-accessible volumes of these star polymers, given that these 

polymers are of different sizes (see Table 5.1).  To account for this, we normalized the values of 

Figure 5.18 by the water-accessible volume for each star polymer.  The Voronoi volumes of the 

hydrophobic regions of each star polymer were observed to be relatively temperature-

independent (24,400 Å
3
 for the PLA star; 19,200 Å

3 
for the PVL; 10,400 Å

3 
for the PE).  This 

volume includes the adamantane component and all of the hydrophobic material of each star 

polymer.  However, the deepest part of this volume, consisting of the adamantane and the first 

few hydrophobic repeat units of each arm, is inaccessible to water due to the high density and 

steric crowding.  Therefore, the volume of hydrophobic material accessible to water in each case 

is the total hydrophobic volume, minus a core volume (see Table 5.1) that includes the 
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adamantane and the first hydrophobic repeat units of each arm out to the transitional units 

discussed earlier.  The core volume includes adamantane plus the first four lactic acid units in the 

PLA star polymer, the first two valerolactone units of the PVL star, and the first three ethylene 

(six carbons) of the PE star.  Scaling the water content data of each star polymer in Figure 5.18 

by the water-accessible volume to account for these size differences does not significantly 

change the trend, but makes the PLA and PVL appear a bit more similar, so that the water 

concentration follows the trend PLA~PVL>PE.   An alternative to this, normalizing the water 

content by the total hydrophobic surface area, produced similar results. 

For each interior water molecule, its depth into the polymer was computed as the distance 

from the oxygen site of that interior water to the closest oxygen of a water molecule in the bulk.  

By our definition of an interior water molecule, there must be at least one intervening Voronoi 

polyhedron from a star polymer site separating these oxygen sites, so there is a minimum bulk to 

interior water distance observed of about 4 Å
 
by this metric.  These depth profiles are shown in 

Figure 5.19 for each star polymer at the four temperatures studied.  It can be seen that these 

curves are very noisy at low temperatures since so few interior water molecules were observed 

(<0.5 per frame).  As the temperature increases, the curves get smoother and penetration is 

deeper into the interiors of the star polymers.  The penetration depth follows the trend PLA> 

PVL> PE, suggesting again that ester-rich environments may be somewhat more favorable to 

water than alkane environments, however one must also keep in mind that the sizes of these star 

polymer differ, and some of the penetration depth trend could be explained by that difference. 
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Figure 5.19:  Depth profiles for water molecules penetrating into the interior of star polymers.  Top panel is for PLA, 

middle for PVL, and bottom for PE star polymers.  In each case, the lines represent the probability density by depth 

for 300 K (black), 350 K (blue), 400 K (cyan), and 450 K (red). 

 

The number and duration of water penetration events were also noted.  We defined a 

water penetration event as having a beginning time, the time of first observation of the water 

molecule in the interior (immediately before which it was not in the interior), some number of 

consecutive observations, and an ending time (immediately after which that water was not an 

interior water).  If an interior water molecule was observed in only one coordinate frame, the 

event was given a lifetime of 40 ps, the sampling period for coordinate sets used in the Voronoi 

analysis.  If the same water molecule was observed to be interior at two successive times the 

event was given a lifetime of 80 ps, and so on.  This does not, of course, account for the 

possibility that water molecules might have come and gone and returned between sampling 

periods.  The number of water penetration events observed per picoseconds is shown in Figure 

5.20, where, again, one can see that the number water penetration events follows the trend PLA> 
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PVL>PE.  Normalized as above to account for differences in the volumes of the star polymers, 

the trend is only slightly different (PLA>PVL>>PE).  Histograms giving the fraction of events as 

a function of their lifetimes are shown in Figure 5.21, where it can be seen that by far most 

penetration events last for only one sampling.     

 

Figure 5.20:  Number of water penetration events observed per picosecond for PLA (diamond), PVL (triangle), and 

PE (square) star polymers.  Uncertainty estimates are ±1 standard deviations. 
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Figure 5.21: Water penetration lifetime distributions.  The top panel is for PLA, middle for PVL, and bottom for PE 

star polymers.  In each case, the data represent the fraction of water penetration events lasting various amounts of 

time for 300 K (black), 350 K (blue), 400 K (cyan), and 450 K (red). 

 

There were rare but notable instances of water molecules existing in clusters, for 

example, as water dimers or trimers.  The average number of water clusters per configuration is 

shown in Figure 5.18 along with the average number of water molecules observed.  When nearly 

all observed water occurred as monomers, as for the PE star, these curves lay on top of each 

other.  The size distribution for these clusters is shown in the bar charts in Figure 5.22, where it 

can be seen that most interior water molecules were monomers, and that water trimers were 

extremely rare.      
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Figure 5.22:  Interior water cluster size histogram.  The top panel is for PLA, middle for PVL, and bottom for PE 

star polymers.  In each case, the data represent the fraction of interior water clusters that were water monomers, 

water dimers or water trimers for 300 K (black), 350 K (blue), 400 K (cyan), and 450 K (red). 

 

5.4 Discussion 

This simulation study precedes a series of small angle neutron scattering (SANS) and 

backscattering spectroscopy (BASIS) experiments to be performed on very similar star 

copolymer molecules.  These experiments are meant to probe the structure, organization, water 

content and kinetics of these kinds of star polymers over a range of temperatures and should 

produce results that can be compared against this study.  The predictions are outlined below.   
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5.4.1 Hydrophobic Cores 

The hydrophobic cores in these molecules are strongly phase-separated from the other 

material, both from the hydrophilic segments of the strands and from water.  Moreover, the 

hydrophobic regions in each case are relatively rigid, with the PLA and PVL polymers showing 

glassy (i.e., disordered and slow) behavior, and the PE showing crystalline behavior until rather 

high temperatures.  The slow kinetics manifests itself in a difficulty to sample adequately some 

of the observables for the PLA and PVL star polymers at the lowest temperature studied (300 K) 

on the 20 ns timescale of the production simulations.  Slow kinetic behavior in the hydrophobic 

core is also apparent from the reorientational correlation functions. 

The highly ordered cylindrical structure of the PE star polymer that persists even at 350 

K is quite striking given that the 16 arms are more or less symmetrically placed around the 

adamantane in a way that should destabilize this kind of structure.  We note that the structures 

formed at low temperatures by the polyethylene in the PE star are reminiscent of the structures 

formed in aqueous solvent by attached alkane chains on the surface of gold nanoparticles [193].   

Further evidence of the solid-like behavior of these molecules is that the surfaces of the 

hydrophobic regions are highly irregular showing asymmetry, pits, and grooves.  The solid 

behavior persists in these materials until temperatures reach 400 K or higher, at which we see 

much shorter correlation times for structural changes in the hydrophobic region.  Of the two 

glassy polymers, the PLA polymer seems to be more rigid than the PVL, possibly due to some 

combination of a higher density of ester groups in the PLA, or more flexibility from the larger 

alkane segment between ester groups in the PVL.  This would suggest that one could produce 

more liquid-like hydrophobic regions in star polymers by placing longer alkane segments 

between the ester groups.  There may be a limit to this since as one approaches very large 
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segments of alkane, one might begin to see the ordered and very solid structures seen in the PE 

star polymer. 

The fact that the rigidity and structure of the hydrophobic regions persist over such a 

range of temperatures suggests that this is not likely to be an artifact of the force field and model.  

We note that the glass transition temperatures for bulk long chain polymers of the same material 

as our hydrophobic cores suggest these regions could possibly be glassy in the context of a star 

polymer, but it is not clear whether or not glass transition temperatures of bulk materials apply 

for the case of a star polymer, with arms that are short, tethered to common connection points, 

and in contact with water.  In fact, our original expectation was that the hydrophobic regions 

would be much more fluid-like.   

5.4.2 Hydrophilic (PEO) Region 

The hydrophilic (PEO) regions of all of the star polymers are very disordered and 

dynamic, exhibiting significant motion on 100 ps timescales even at the lowest temperatures 

(300 K) studied.  This behavior is apparent in the reorientational correlation functions, where one 

can see the striking behavioral contrast with the hydrophobic regions to which they are 

connected.  The hydrophilic regions are highly solvated with water, and the PEO segments in 

these simulations appear to prefer contact with water to contact with the hydrophobic core.  

However, the thermal behavior of the PEO is most interesting and unusual.  There is a slight 

increase in PEO-hydrophobic core interfacial area, but a large decrease in PEO-water interfacial 

area with increasing temperatures, suggesting a tendency of the PEO to self-aggregate with 

increasing temperature, reminiscent of a lower critical solution temperature (LCST) seen in 

PEO-water mixtures where one can observe a mixture go from a single phase (miscibility) to two 
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phases with increasing temperature.  We believe that further experimental and simulation studies 

should be done to investigate this effect. 

We note that the hydrophilic (PEO) regions of the diblock arms in our star polymers are 

very short compared with those in some of the recently synthesized and simulated [223] star 

polymer systems.  Because of this, there is a limit to how large a fraction of the hydrophobic 

region can be covered by the PEO in our models.  The recent work by Huynh et al. [223] has 

suggested that longer PEO segments would have a greater tendency to protect the hydrophobic 

region than the relatively short chains of this study.  We have not varied the PEO segment length 

in this study.  However, the tendency for association of PEO with the hydrophobic core in our 

model appears to be so weak that the chain length may not adversely affect our results for these 

types of hydrophobic materials.  Clearly, there are entropic forces at play in this matter as well, 

but we speculate that the balance of interactions exhibited by the force field among water, PEO, 

and hydrophobic material is more likely to affect these observations than the PEO chain length, 

since stronger or weaker interactions could tip the balance in various directions.  Our water 

model was TIP4P-Ew, whereas the work of Huynh et al. employed the SPC water model, which 

has a smaller dipole moment.  Also, we used a more solvent-polarized model for the PEO than 

Huynh et al., resulting in a larger partial charge on the PEO oxygen sites.  Both of these aspects 

could serve to increase the solubility of our PEO.  Subsequent work might assess the sensitivity 

to the water and/or star polymer force field of the relative tendency of PEO to associate with 

itself, with water, or with the hydrophobic material.  However, whether there is sensitivity due to 

chain length, force field, or temperature, this hints that the degree of protection of the 

hydrophobic core offered by the hydrophilic region, or its thermal dependence, could be 

engineered by minor changes in chain length and composition. 
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The trend in affinity of PEO for the hydrophobic core seen in the interfacial surface area 

(Figure 5.16; PLA>PVL>PE) suggests that PEO has greater affinity for ester-rich hydrophobic 

material than for alkane-rich material, which might not be surprising.  We note, however, that 

some of the trend in Figure 5.16 is also due to differences in the volumes of the hydrophobic 

regions, but the conclusions remain the same when this is accounted for. 

Similar observations have been made in a different context by other workers.  Yang et al. 

[192] reported on simulations of PE chains and PEO chains attached to gold nanoparticles in an 

aqueous environment where they found solvation and closer penetration by water near PEO-

coated surfaces, and greater water exclusion from the PE-coated gold nanoparticles. 

5.4.3 Interior Water 

The orientationally averaged mass density seems to suggest that water penetrates rather 

far into the hydrophobic region of the polymer.  However, the Voronoi analysis suggests that this 

is an illusion created by orientational averaging over the misshapen and rough hydrophobic 

surface.  In fact, there is a very well defined water-hydrophobic region interface.  These 

observations are consistent with those of Huynh et al. [223].   

In spite of the phase separation between hydrophobic and hydrophilic material, there is a 

very small amount of water that transiently enters the hydrophobic region, with a probability 

trend of PLA>PVL>>PE, showing a decrease with decreasing ester and increasing alkane 

content.  Water penetration increases with temperature and, so, appears to be thermally activated.  

However, part of this effect may be due to a change in phase as the hydrophobic core becomes 

more fluid-like at the higher temperatures.  The increase in water content with temperature is 

much greater for PLA.  Some of the differences in water uptake seen among star polymers in our 
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simulations can be explained by different sizes and surface areas of the hydrophobic regions of 

these systems, but the trend remains the same when allowance is made for these differences. 

Analysis of the temporal behavior of water entry into the hydrophobic regions reveals 

that such events are rather rare, very short lived, not very deep into the interior  (even for our 

admittedly small polymers), and predominantly involve single water molecules rather than 

dimers or trimers of water.  Because small molecule esters are relatively soluble in water, our 

expectations were that there would be much more water diffusing into the ester-rich interiors of 

these star polymers.  Apparently, although ester groups interact favorably with water, the 

interactions among this hydrophobic material are stronger than the water-ester interactions and 

lead to the expulsion of water.  Finally, we feel that there is enough bulk water contact with the 

hydrophobic material and enough penetration of water that it could help facilitate a slow 

degradation of the star polymer as well as enable drug release.  Based on the differences among 

the star polymers of this study we feel that such attributes might be controllable with changes in 

polymer composition and topology.   

5.4.4 Caveats 

         In most respects, our results are remarkably consistent with the observations of Huynh et 

al. [223] in their study of 13 different six-arm star polymers based on differing lengths of 

hydrophobic polycaprolactone (PCL) and hydrophilic PEO segments.  A direct numerical 

comparison of our results with theirs is not possible because of a number of differences in the 

two studies: the numbers of arms, the segment lengths, the connection mechanism, and different 

metrics for the computation of water contact and interfacial surface area.  We note that their 

studies showed that with increasing length of PEO segments relative to that of the PCL segment, 

the fraction of the total hydrophobic surface area that is protected from solvent increased from 
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about 60% (short PEO segments) to about 90% (long PEO segments).  We did not explore the 

effects of changing the length of the PEO segment, but our PEO segments appear to be 

significantly more soluble in water than theirs, resulting in less protection of the hydrophobic 

region.  We would predict that a PCL-based star polymer, with five methylene groups between 

ester groups, should behave similarly to our PVL star polymer, with four methylene groups. 

Because of the internal strain caused by connecting 16 diblock polymer arms to 

adamantane, we have observed that as one moves from monomer unit to monomer unit along 

each of the arms that the first couple of units are structurally and kinetically constrained until one 

reaches some transitional units, after which the material begins to behave in a way that is 

probably more representative of larger star polymers.  These transitional units can be identified 

from analysis of the orientationally averaged mass distribution function and the reorientational 

correlation functions, both resolved by monomeric unit.  The transitional units might change 

somewhat with temperature, moving closer to the core with increasing temperature.  Some of our 

results may be affected by the small size of these star polymer models since the rigid part of the 

hydrophobic core might provide a template that artificially stabilizes anomalous structures and 

adversely affects kinetics and sampling.  Subsequent work should be performed with longer arms 

and/or a more extended or realistic core than adamantane to validate or challenge these results.  

In general, details of our conclusions may depend somewhat on force field parameters, but we 

feel the general trends with temperature and with composition of the hydrophobic core are 

realistic.   

One might ask whether the simulations were sufficiently long for adequate sampling, 

especially given that those of Huynh et al. were at least 200 ns per star polymer system.  Their 

study was done on systems at 300 K, and we note that at that temperature we had difficulty with 
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sampling some of the observables for the PLA and PVL star polymers using 20 ns production 

simulations.  However, they noted that although their simulations exceeded 200 ns, most 

observables were stable after about 15 ns of sampling.  Moreover, we feel that at our higher 

temperatures (350 K, 400 K and 450 K) we were able to sample adequately due to the shorter 

correlation times at these temperatures.  Except for a few of the observables measured at 300 K, 

all of our results follow reasonable systematic trends with temperature, and the uncertainty 

estimates appear to be realistic.  That is, simulations at higher temperatures allow us to estimate 

the temperatures for which we were not able to sample adequately, and to help establish an 

effective glass transition temperature for the polymer where the relaxation times begin to exceed 

the production simulation time.  In fact, this is part of the basis for our suggestion that these 

polymers are glassy at 300 K and 350 K.   

We note that the lamellar structure of the PE at 300 K is similar to the extended structure 

of this polymer before equilibration and production are performed, and that the lamellar structure 

might therefore be seen as an artifact of incomplete sampling at low temperature.  Due to the 

persistence of order in the PE structure even at 350 K, we argue that the low-temperature 

structure is not artifactual.  In order to test this hypothesis, future work might include starting a 

simulation of PE at 300 K using a starting structure from the high-temperature simulation at 400 

K or 450 K.   

Our study employed constant volume simulations to mimic canonical (NVT) ensembles, 

rather than temperature- and pressure- controlled simulations to mimic isobaric-isothermal (NpT) 

ensembles.  Due to the method of preparation, the density in all of these simulations was 

designed to be appropriate near 300 K, and consequently slightly too large for the higher 

temperatures.  However, our goal in performing the higher temperature simulations was to assess 
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the stability of our results rather than to represent accurately these higher temperatures.  In any 

case, the higher two temperatures of our study are known to be above the vaporization 

temperature of the TIP4P-Ew water model.  Moreover, the thermal expansion coefficient of 

water is such that the error in the density is still rather small, provided one remains in the liquid 

state.   

Pressure denaturation is a phenomenon known in protein science where proteins can be 

unfolded by subjecting them to increased pressure.  The exact mechanism of this effect has been 

debated, but one suggestion is that increasing the pressure increases the chemical potential of 

water molecules in the bulk water (i.e., surrounding the protein) and drives them into the interior 

of the protein, causing disruption of intraprotein hydrogen bonding.  If such an effect were 

operative here, the increased pressure at our higher temperatures might drive water into the 

hydrophobic interior, and/or cause disruption of PEO-PEO interactions.  The Voronoi analysis 

does indicate a slight increase in water content with temperature that could be pressure-induced, 

but the water content is so small, this is probably not significant if operating at all.  The effect of 

increased pressure on the high-temperature aggregation of the PEO might cause the aggregation 

phenomenon to shift in our simulations to slightly higher temperatures, and this might be worthy 

of investigation.  

Finally, we note that the thermal control mechanism used in this study could, in principle, 

affect temporal observables such as correlation times, rates of water penetration events, and 

water absorption lifetimes.  However, we do not expect this to affect the trends we have observed 

with respect to composition and temperature. 
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5.5 Conclusions 

We have performed molecular dynamics simulations at four different temperatures on 

three different star polymers, each with 16 linear diblock copolymer arms bonded to a small 

adamantane core.  Across the three star polymer types, there is a difference in the degree of ester 

versus alkane content in the hydrophobic component of each arm, including one rich in ester 

content (PLA), one with a mix of ester and alkane content (PVL), and one with pure alkane 

content (PE).  Whereas earlier simulation studies have explored star polymer behavior at a single 

temperature and investigated the effect of variations in chain number, length, and composition, 

but for a given type of hydrophilic and hydrophobic material, we have looked at thermal effects 

and considered three different types of hydrophobic material. 

In all situations, there is a pronounced phase separation of the alkane (PE) and ester 

(PLA, PVL) hydrophobic material from the rest, producing a phase with virtually no water, and 

with no mixing with the hydrophilic (PEO) material.  The hydrophilic material mixes very well 

with the water at low temperatures, but exhibits signs of phase separation itself at higher 

temperatures, reminiscent of a lower critical solution temperature (LCST) effect also seen in 

PEO-water mixtures.  At higher temperatures the PEO material condenses and increases its 

contact with the hydrophobic material. 

Structural (density profiles) and kinetic analysis (orientational correlation functions) 

indicate that the hydrophobic material is solid-like and either very viscous/glassy (ester-based 

hydrophobic material, PLA and PVL) or structured (alkane material, PE).  The phase separation 

and solidity of the hydrophobic material in these systems renders them rather impermeable to 

water, and water entry events are rare, short-lived, and shallow in spite of the fact that the ester-

based material has a high density of hydrophilic functional groups. 
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With respect to the use of these kinds of star polymers as transporters of hydrophobic 

drug molecules, we feel that the above observations imply that drug molecule cargos would have 

a difficult time being absorbed into them and are more likely to be adsorbed onto the 

hydrophobic surface of these materials, i.e., at either a water-hydrophobic material interface, or 

at a hydrophilic-hydrophobic material interface, rather than being encapsulated in their interiors.  

If this is the case, we predict drug loading to be proportional to the surface area rather than the 

volume of the star polymer for star polymers of these compositions. 

As evidenced by various shape descriptors and surface area measurements, the surfaces 

of the hydrophobic regions of our star polymers are generally irregular and misshapen, with 

grooves and pits.  For star polymers with larger hydrophobic regions, there might be a greater 

tendency to adopt more spherical shapes, but depending on the composition, it is also possible 

that the hydrophobic surface could have a very rough or fractal nature with a surface area that 

increases more rapidly than as (volume)
2/3

.  This, of course, would affect drug loading as well, if 

it occurs at interfaces.  We feel shape, surface area, rigidity, and their effect on cargo loading 

will be an important area for experimental characterization. 

We believe that the tendency for PEO segments to self-aggregate with increasing 

temperature deserves further experimental and theoretical investigation and could offer a means 

to control the behavior and function of these types of polymers.  In the context of the use of star 

polymers for drug delivery, an example might be the use of hydrophilic chains engineered in 

composition and density to increase contact with water when the temperature is lowered slightly, 

allowing greater exposure of the hydrophobic core and controlled release of cargo stimulated by 

temperature drop.  
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“Nature is alive and is talking to us.  This is not a metaphor.” 

--Terence McKenna   

6. Conclusions 

 Major advances have been made in the field of biomolecular simulation since the 

discipline came to life 50 years ago.  Improvements in computational resources have progressed 

alongside advances in our theoretical understanding of the physics underlying biological 

systems.  These strides have increased not only the temporal extent of our simulations, but also 

their accuracy in reproducing and predicting the thermodynamic and kinetic properties of 

biomolecules.  The next 50 years of computational biology hold as much promise as the first, as 

computational techniques are increasingly applied to some of the greatest challenges currently 

facing the fields of biology and medicine.    

Although biomolecular simulation has thus far achieved great success, limitations remain 

in the ability of this methodology to accurately model biomolecular structure and dynamics, and 

to solve problems efficiently in terms of the computational time and resources required.  These 

limitations are rooted in the complexity of the systems under study; in order for many of the 

problems probed by simulation to be computationally tractable, we must build models of these 

systems which are reduced in complexity when compared with those found in Nature.  The force 

fields that are used in modeling biological systems serve to approximate the real physics, and are 

in many cases chosen for computational tractability rather than accuracy.  While these force 

fields have certain shortcomings, their use by a large community ensures that errors are quickly 

discovered, and ongoing work by many research groups ensures that force fields are continually 

improved.  An additional shortcoming in our simulation arises due to the inability of simulations 

to completely sample the rugged free energy landscape on which biomolecules exist, as the 
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presence of many local minima limits the extent of conformational sampling that may be 

achieved.  The development of enhanced sampling techniques aims to bypass this limitation by 

manipulating the formulation of the system's energy function and the equations of motion.   

 This dissertation has presented two algorithms that aim to enhance the conformational 

sampling of peptides in stochastic and molecular dynamics simulations while retaining accurate 

ensemble properties.  In Chapter 3, the application of self-guided Langevin dynamics (SGLD) to 

the folding of three different peptides was explored.  The two parameters used with SGLD, the 

guiding factor and the averaging time, were systematically varied in order to determine their 

effect on the kinetic rates and thermodynamic stability of the ensembles obtained.  In Chapter 4, 

a variant of replica-exchange molecular dynamics (REMD) was presented which aims to 

enhance sampling of proteins while increasing the computational efficiency of the simulation.       

 Chapter 5 of this work outlined the application of molecular dynamics simulation 

techniques to three polymeric nanoparticle model systems for their potential use in targeted drug 

delivery applications.  Model systems possessing reduced complexity when compared to those 

fabricated in the laboratory were employed in this case in order to make simulation 

computationally tractable.  As outlined in Chapter 5, we believe that these model systems yield 

results that are applicable to the laboratory system, and also generalizable to other star polymeric 

systems. 

 In building models, it is our responsibility to continually assess their limitations, as the 

improvement of our models is a vital part of the model-building process.  Inaccuracies in the 

force fields and solvent models used in biomolecular simulation, for example, result in 

pathological problems in the simulation structures when compared with experimental results. 

When discovered, however, these errors are reported in the literature by a community of users, 
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and the models are continually improved in order to account for any deficiencies.  As we look to 

the future, much work remains to be done to increase the accuracy of our models and to ensure 

that our simulations accurately reproduce natural phenomena.   
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