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Abstract of the Dissertation 

A Structural and Energetic Model for the Slow-onset Inhibition 

by 

Cheng-Tsung Lai 

Doctor of Philosophy 

in 

Biochemistry and Structural Biology 

Stony Brook University 

2014 

 

Slow-onset inhibitors are of particular interest in drug discovery programs as the slow 

dissociation of the inhibitor from the target-inhibitor complex prolongs target occupancy and 

improves in vivo efficacy. While slow-onset inhibition is observed in many enzymes and the 

kinetic equations used to describe slow-onset inhibition were derived more than 26 years ago, the 

structural basis for slow-onset inhibition is still not generally well understood, hindering 

prediction and control of slow-onset binding kinetics. An enzyme system with known 

experimental kinetics and structural data for multiple classic and slow-onset inhibition 

complexes would be an ideal model system for the study of structure basis of slow-onset 

inhibition. InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a validated target for 

the development of tuberculosis chemotherapeutics and an excellent model system for the study 

of slow-onset inhibition. Inhibition of InhA follows a two-step binding mechanism in which 

formation of the initial enzyme-inhibitor (EI) complex is followed by a slow conformational 

change that leads to the final enzyme-inhibitor complex (EI*). In this work, based on analyses of 
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all available crystal structures, we found that the active-site conformation of InhA can be 

characterized as open or closed. Unrestrained molecular dynamics simulation started from the 

open conformation demonstrated that the active-site helix-6&7 region was moving toward to a 

semi-closed conformation in both rapid reversible and slow-onset inhibitors bound complexes. 

On the contrary, when simulation started from the closed conformation, the active-site helix-6&7 

region maintained in a relative stable conformation in the slow-onset inhibitor bound complexes. 

We hypothesized that the open and closed conformations represent the initial EI and final EI* 

complexes, respectively, and conformational change from open to closed is the slow structural 

isomerization step. By using partial nudged elastic band (PNEB) and umbrella sampling (US) 

simulations, we were able to obtain a continued energy landscape along the open-closed 

conformational change path. For the rapid reversible inhibition complexes, the energy landscapes 

exhibit two types of energy profile, either preferring the open state, or having little preference 

and low energy barrier between the open and closed states. On the other hand, the slow-onset 

inhibition complexes have a relative stable closed state with a more significant energy barrier 

between the open and closed states. 

In order to modulate the life-time (residence time) of the enzyme-inhibitor complex, it is 

important to understand the interactions that modulate this induced-fit mechanism and, 

specifically, to determine the structure of the transition state that lies on the reaction coordinate 

between the open and closed states. Structural analyses identified several active-site residues that 

regulate the free energy barrier in the open-closed path. Replacement of these key residues with 

amino acids possessing smaller side chains results in a decrease of energy barrier. The energy 

barrier can be restored by rational reintroduction of a steric clash at the transition state. This was 

accomplished in two different ways: through mutation of a residue at a different position to a 
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larger side chain, or through modification of the ligand with a bulky substituent. These loss and 

regain of function studies validate these key residues controlling conformational change, and will 

provide a platform for the design of inhibitors with longer residence time and better in vivo 

potency.  

Although the free energy profile derived from the PNEB/US approach provides a way to 

distinguish rapid reversible and slow-onset inhibitors, PNEB/US approach is computationally 

expensive and time-consuming. It is unlikely to use this approach to examine every inhibitor, 

thus, a rapid screening approach – using docking to rapidly examine inhibitors was designed. 

The dock score had same trend as the US results. The combined dock/PNEB/US protocol could 

provide an approach for slow-onset inhibitor screening. 
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Chapter One 

Introduction 
 

1.1 Background of Tuberculosis 
 

 Tuberculosis (TB) is a contagious disease caused by the bacillus Mycobacterium 

tuberculosis (MTB) that mainly targets the lungs, but also attacks any part of the body, such as 

the brain, the kidneys, or the spine. TB spreads from person to person through the air. According 

to the World Health Organization (WHO) 2012 report, there were 8.7 million new infected cases 

and 1.4 million people died from TB around the world in 2011. Geographically, Asia is the most 

affected area, accounting for 59% of all cases. Other affected areas are Africa (26%), Eastern 

Mediterranean region (7.7%), the European region (4.3%), and the region of the Americas (3%) 

(1).  

 TB can be characterized as latent TB infection or TB disease. People become TB infected 

by breathing in TB bacteria. TB bacteria can live in the human body without causing illness 

because the human’s immune system can fight the TB bacteria. In this situation, this is called 

latent TB infection. People with latent TB infection do not feel sick, do not have TB symptom, 

and will not spread TB bacteria to others. However, TB bacteria will become active if the 

infected person has a weak or compromised immune system, and in this situation it is called TB 

disease. The symptoms of TB disease include chest pain, coughing up blood, fatigue, low 

appetite, weight loss, chills, fever, and night sweating. Because the latent TB can become active 

TB in an immunocompromised body, a 20-fold increased rate of activating latent TB is found in 

the HIV infected people (2, 3). 
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 Current treatment of TB consists of a six month regimen of four first-line drugs: 

Isoniazid, Rifampicin, Ethambutol and Pyrazinamide (Figure 1.1) (4). Isoniazid and 

Rifampicin are the two most powerful TB drugs targeting enoyl-ACP reductase and DNA-

dependent RNA polymerase, respectively. For multidrug-resistant TB (MDR-TB), defined as 

resistance to both Isoniazid and Rifampicin, the treatment requires other more expensive and 

more toxic second-line drugs, and the treatment time is at least 24 months. WHO estimated the 

cost to stop TB between 2013 and 2015 will be $8 billion per year, including $5 billion for the 

drug-susceptible TB, $2 billion for the MDR-TB and $1 billion for the TB/HIV interventions (1). 

Therefore, a cheaper and more efficient way to treat TB is always needed. 
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Figure 1.1. The first-line anti-TB drug. Isonizaid, Rifampicin, Pyrazinamide, and 

Ethambutol. 
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1.2  New TB drugs underdevelopment 
 

 There is an urgent need for new TB drugs. TB drug-resistant strains were being isolated 

clinically one year after the use of the first-line drugs Isoniazid and Rifampicin in early 1950s 

(5). Because the MDR-TB requires a 24-month treatment regimen and the second-line drugs are 

associated with significant side-effects, new drugs to shorten and simplify TB treatment have 

always been needed. Figure 1.2 summarizes new TB drugs that are currently underdevelopment: 

several enzymes and leads have been identified, such as enoyl-ACP reductase (InhA), 

oxidoreductase (DprE), and DNA gyrase (GyrB). There are four drugs in phase III stage, 

including Delamanid (OPC-67683), Gatifloxacin, Moxifloxacin and Rifapentine. Among 

these drugs, Delamanid is known to target the mycolic acid biosynthesis but to what enzyme it 

targets remains unknown (6). Gatifloxacin and Moxifloxacin are known to target DNA gyrase 

(7). Rifapentine, similar to Rifampicin, targets RNA polymerase. 

 

 

 

 

 

Figure 1.2. The development pipeline of new TB drugs. (reproduced from WHO 2012 

report (1).)  
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1.3  Enoyl-ACP reductase (InhA), the target of isoniazid 
 

 Isoniazid, the most effective first-line TB drug, destroys the TB cell wall integrity by 

blocking the biosynthesis of mycolic acid (8). Mycolic acid, a long chain fatty acid (C50~C60), 

is a common component of extra cellular matrix in gram-positive bacteria (Figure 1.3). Bacteria 

synthesize mycolic acid via the fatty acid synthesis II (FAS II) pathway, whereas humans use 

FAS I pathway to generate short chain fatty acid. Another significant difference between FAS I 

and II pathway is that FAS I system uses a multifunctional enzyme for all catalytic process, 

while multiple unifunctional enzymes are found in the FAS II system of bacteria. Hence the FAS 

II pathway is a promising target for developing anti-bacteria drugs. The elongation process of 

FAS II consists of four steps: condensation, reduction, dehydration and a second reduction 

(Figure 1.4). The second reduction step in this elongation process is catalyzed by enoyl-acyl 

carrier protein reductase, which is the target of Isoniazid. The enoyl-acyl carrier protein 

reductase is generally known as FabI (fatty acid biosynthesis protein I), and is named as InhA in 

MTB because it is coded by the inhA gene (9).  
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Figure 1.3. Schematic representation of the mycobacterial cell wall. Mycolic acid is an 

essential component of the mycobacterial cell wall. Figure taken from (8). 

 

 

Figure 1.4. FAS II biosynthesis pathway. Long chain fatty acids are synthesized by discrete 

and unifunctional enzymes. The last step of each elongation cycle is catalyzed by enoyl-ACP 

reductase which converts enoyl-ACP to acyl-ACP. 
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Isoniazid is a pro-drug that requires activation by KatG, a catalase/peroxidase enzyme 

found in MTB.  Upon activation, Isoniazid and the cofactor NAD(H) form a covalent INH-NAD 

adduct. The INH-NAD adduct inhibits InhA by competing with the NADH for the active-site 

driven by better binding affinity to InhA (Figure 1.5). Figure 1.6 shows the superposition of 

INH-NAD adduct and the substrate analogue bound InhA, illustrating how the INH-NAD adduct 

blocks InhA enzymatic function: INH-NAD occupies the position of residue Y158, making 

residue Y158 move to the substrate binding pocket and therefore prevents substrate binding to 

the active-site. 

 

 

Figure 1.5. Activation of prodrug isoniazid. Isoniazid and cofactor NAD
+
 form INH-NAD 

adduct.  The INH-NAD adduct has similar structure to the cofactor NADH. 
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Figure 1.6. Superimposed structure of INH-NAD and substrate analog bound InhA. The 

INH-NAD adduct (green) occupies the original position of residue Y158 (blue) and pushes Y158 

to the substrate binding pocket, preventing substrate binding to the active-site. The substrate 

analogue is shown in red. 

 

The INH-NAD adduct is a slow and tight-binding inhibitor of InhA (10). The binding of 

INH-NAD to InhA involves a two-step enzyme inhibition mechanism. The initial step is a fast 

and weak binding process (Ki = 16 nM) followed by a slow conversion to the final complex with 

an overall Ki = 0.75 nM. Because KatG mutants have been reported to be linked with some 

clinical drug-resistant TB strains, compounds that do not require activation while directly 

inhibiting InhA could be promising to overcome the resistance. 

Triclosan (Figure 1.7), unlike Isoniazid, inhibits FabI directly without the requirement 

of activation by another enzyme. Triclosan is a widely used antimicrobial agent that found in 

many consumer products, such as soaps, toothpastes, mouthwashes, deodorants, shaving creams 

and cleaning supplies. Triclosan is a slow-onset inhibitor of E. coli FabI, but is a weak binding 

(Ki = 0.2 μM) and rapid reversible inhibitor of MTB InhA (11, 12). Using structure-based drug 

design approach, 2-(o-Tolyloxy)5-hexylphenol (PT70, Figure 1.7) was designed and shown to 
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be a slow-onset and tight binding inhibitor of InhA with an overall Ki value of 22 pM and a 

residence time of 24 min (13).  

 

 

Figure 1.7. Structures of Triclosan and 2-(o-Tolyloxy)5-hexylphenol (PT70). Triclosan is a 

rapid reversible and weak inhibitor of InhA. Using structure-based drug design approach, PT70 

was found to be a tight binding and slow-onset inhibitor of InhA. 

 

1.4  The two-step binding mechanism and the residence time 
 

Enzyme-inhibitor complex formation often occurs through two mechanisms. The first 

mechanism describes common enzyme-inhibitor binding events, which only have a simple, one-

step association/dissociation process (Scheme 1.1A). The second mechanism involves an 

enzyme isomerization step after initial inhibitor binding, leading to a tighter, reversible enzyme-

inhibitor complex (Scheme 1.1B). The latter one is also known as induced-fit mechanism. From 

kinetics experiments, it is known that this isomerization process is much slower than the initial 

inhibitor binding step for most enzyme systems. 



 

9 
 

 

Inhibitor binding kinetics has emerged as an important parameter in lead optimization 

(14-18).  Traditionally, a strong binder is thought to have better efficacy than a weak binder (19). 

However, many results have argued that in vivo efficacy does not always strongly correlate with 

binding affinity (20). One of the reasons is that the environment where drug-target encounters is 

different: the in vitro system is a closed environment, whereas the in vivo system is an open 

environment. In a closed system, the enzyme and inhibitor concentrations remain constant. In 

this situation, thermodynamic equilibrium constants such as Kd , Ki or IC50 can be measured 

accurately. On the other hand, in an open system, the enzyme and inhibitor diffuse between 

cellular compartments over time with changing concentrations, resulting in a dynamic and non-

equilibrium process. The thermodynamic equilibrium measurements (ie. equilibrium constant Ki) 

determined in vitro are no longer appropriate to represent or predict in vivo efficacy. Hence, an 

equilibrium independent parameter would be a better measurement for enzyme-inhibitor 

interaction, such as, the dissociation rate constant. The dissociation rate constant is independent 

with respect to inhibitor and target concentrations, making an ideal parameter to predict inhibitor 

efficacy in vivo. Moreover, because an inhibitor has its function only when being occupied by 

the target, the time of an inhibitor resides in the target provides a direct indicator of inhibitor 

 

Scheme 1.1. One- (A) and two-step (B) enzyme-inhibitor binding mechanisms 
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efficacy. Ideally, an inhibitor with a small dissociation rate constant will dissociate slower and 

reside in the target longer than an inhibitor with a large dissociation rate constant. Because the 

dissociation rate constant has a unit of s
-1

 or minute
-1

, the dissociation rate constant then can 

directly represent the life-time of target-inhibitor complex. 

 Residence time, the reciprocal of the dissociation rate constant, represents the life-time of 

an enzyme-inhibitor complex (14, 15). For the one-step kinetic mechanism, the residence time is 

defined as the reciprocal of dissociation constant (1/k-1). In a two-step kinetic mechanism, the koff 

includes both forward and reverse steps in enzyme isomerization and the dissociation of the 

initial EI complex (koff = k-1k-2/(k-1+k2+k-2)). A hypothetical model suggests that for a series of 

compounds with the same Ki, a long half-life drug can maintain a higher drug concentration and 

target occupancy than a short half-life drug (Figure 1.8) (18). Moreover, the observations from 

many current drugs demonstrate that they have long residence times on their targets, suggesting 

drug-target residence time is an important component of in vivo drug activity (18). In particular, 

the study of Francisella tularensis (ftuFabI) showed that residence time has better correlation 

with in vivo efficacy than does the binding affinity (21).  
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Figure 1.8. A hypothetical model of drug concentration versus time (18). The long residence 

time inhibitor has a higher target occupancy than short residence time inhibitor. The drug is 

assumed to have the same Ki (14 nM) and to reach a maximum concentration (Cmax = 500 nM) 

at the target site 1 h after dosing and have an elimination half-life of 1 h. For rapid reversible 

(RR) inhibitor, it is assumed that drug and target are at equilibrium, so that free drug can rebind 

to the target. For slow-onset inhibitor, it is assumed that drug does not rebind to the target. The 

drug concentration at time t is calculated as                     . Figure taken from (18).  

 

1.5  X-ray crystal structures of InhA 
 

 The biological assembly of InhA is a homotetramer; each monomer contains 269 amino 

acids (Figure 1.9). As shown in Figure 1.9B, InhA has a sandwich-like architecture: β-strands in 

the middle are surrounded by two layers of α-helices. According to CATH classification, InhA 

belongs to the 3-layer (αβα) sandwich architecture and the Rossmann fold (22). The monomer of 

InhA contains 14 helices and 11 sheets based on the DSSP analysis (Figure 1.10) (23).   
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Figure 1.9. The X-ray crystal structure of InhA. (A) Biological assembly and (B) monomer. 

(PDB code: 1BVR) 

 

 

Figure 1.10. Secondary structure of InhA. InhA contains 14 helices and 11 sheets (PDB code: 

2X23). The secondary structure was determined by DSSP approach (23). 
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The active-site helix-6 (residue 198 to 206) has been hypothesized to be correlated with 

slow-onset inhibition. From crystal structure observations, InhA has a disordered helix-6 in the 

presence of rapid reversible inhibitors, such as triclosan, PT3 and PT5. Conversely, this helix-6 

is ordered when InhA is bound with a slow-onset inhibitor (PT70) (Figure 1.11) (13). Similar 

observations are also noted in E.coli FabI. FabI has an ordered active-site helix with the slow-

onset inhibitor triclosan (24). These observations lead to the hypothesis that slow-onset 

inhibition is coupled to ordering of active-site loop (13). The detailed mechanism causing slow-

onset inhibition as well as how to control slow-onset inhibition, however, has yet to be 

completely characterized. 

 

 

Figure 1.11. Ordering of the helix-6. (A) InhA bound with a rapid reversible inhibitor (B) InhA 

bound with a slow-onset inhibitor. The slow-onset inhibitor bound InhA has an ordered helix-6.  
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 Because the kinetics results imply slow-onset inhibition of InhA involves a slow 

conformation change step and the crystal structures only provide static picture, there is a 

knowledge gap between the resulted kinetic and structural data. Moreover, rational modulation 

of the residence time of an enzyme-inhibitor complex remains very challenging, since it requires 

insight into the detailed structural mechanism of isomerization step, and, specifically, the 

structure of the transition state; these are typically not directly accessible to experimental 

characterization. We used MD simulation to bridge the gap between the kinetic and structural 

studies. Because the conformational change is slow, a standard MD simulation approach will not 

be able to sample this slow structural isomerization step. In this study, we used several advanced 

MD approaches in addition to the standard MD.  

 

1.6  Molecular dynamics simulation 

1.6.1 Background 

 

Molecular dynamics simulation is a computational approach that calculates the 

movements of atoms and molecules based on the theory of molecular mechanics. The motion of 

atoms and molecules are determined by numerically solving the Newtonian equations of motion. 

The forces driving atoms to move are defined by molecular mechanics force fields, which are 

mathematical description of physical parameters. The common terms of molecular mechanics 

force fields are bond, angle, dihedral angle and non-bonding interactions (Figure 1.12). Unlike 

quantum mechanics, the force fields method ignores the electronic motions and only calculates 

the energy as a function of the nuclear positions; therefore the force fields are empirical. Since 
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the motion of atoms and molecules are based on the force field, an accurate force field is indeed 

important for molecular dynamics simulation.  

 

           

Figure 1.12. General molecular mechanics force field terms (25). 

 

 Currently, the most commonly used force field in AMBER is ff99SB (26), which has 

been cited more than 1600 times (until Jan 2014) since 2006. The common way to obtain 

empirical force field is to fit the force field parameters to experimental or quantum mechanics 

data. Thus, the accuracy of force fields is always dependent on the quality of experimental 

results and the available computational resource used to train the force field parameters at that 

time. For example, the most well-known force field associated with AMBER simulation package 

during 1990s was the 1994 Cornell force field 94 (ff94) (27), which was widely used during that 

time but less common used today due to the development of more accurate force fields such 

ff99SB. Because of the limitation of computational resource at that time, the backbone 

parameters were fit only to a small number of glycine and alanine dipeptide from quantum 



 

16 
 

mechanical results. The limitation of this force field has been reported to be overstabilization of 

α-helix secondary structure (28, 29). A subsequent modification of ff94, ff96 attempted to 

reproduce the energy difference between extended and constrained α-helical energies, but it 

overestimates β-strand propensity (30). With more efficient computing power, ff99 refit the 

backbone force field by including alanine tetrapeptides along with alanine dipeptides (31). 

Although ff99 tried to refit the force field using tetrapeptides to correct the ff94 problem, it 

introduced incorrect conformation preference for glycine and other amino acids. A further 

modification ff99SB (26) improved the φ, ψ-dihedral terms in the ff99 energy function by fitting 

both alanine and glycine tetrapeptides from quantum mechanical results, thus achieving a better 

balance of secondary structure propensities for both glycine and alanine. 

 

1.6.2 Free energy calculation of protein-ligand interactions 

 

It has been more than two decades since people first used computational approaches to 

calculate and predict binding free energies for protein-ligand complexes. In this section, I briefly 

summarize some common approaches for free energy calculation for protein-ligand interaction. 

 

1.6.2.1 Endpoint methods 

 

There are two commonly used binding free energy calculation approaches that fall into 

the endpoint method category: (1) linear interaction energy (LIE) (32); (2) molecular 

mechanics/Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized 

born surface area (MM/GBSA) (33, 34).  
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In the LIE approach, the binding free energy is estimated as the energy difference 

between bound and free states. The basic assumption is that the free energy of binding is a linear 

response on the polar energies (controlled with the parameter β) and nonpolar energies 

(controlled with the parameter α) as shown in equation 1.1  

ΔG = α (Uvdw,bound - Uvdw,free ) + β (Uelec,bound – Uelec,free )                  Eq. 1.1 

The coefficient α = 0.161 was initially derived from training to experimental binding 

affinity data of four endothiapepsin inhibitors with a theoretically derived β value (β = 0.5) (32). 

One of the limitations of the LIE approach is that different protein systems may require different 

sets of coefficients α and β. Thus, for the new system of interest, experimental binding affinity 

data may be required to train the coefficients before further predictions can be made. But, it is 

quite surprising that the initial values of  α and β also work on other enzyme systems, such as 

HIV protease (35, 36), trypsin (37) and glucose/galactose binding protein (38). Further 

parameterization approaches, such as including the surface area term, have been incorporated 

into LIE calculation to improve accuracy of prediction (39-41).  

MM/PBSA and MM/GBSA are two widely used endpoint free energy calculation 

methods. MM/PBSA and MM/GBSA are post-processing approaches – the free energy is 

calculated based on existing MD trajectories. Equation 1.2 shows that the binding free energy of 

ligand (ΔGbind) can be described as the free energy of complex minus the free energies of 

unbound protein (Gunbound protein) and free ligand (Gfree ligand). 

ΔGbind = Gcomplex - (Gunbound protein + Gfree ligand)                                      Eq. 1.2                                     

The binding free energy (ΔGbind) consists of three terms: molecular mechanical energy (ΔEMM), 

entropy (TΔSsolute) and solvation energy (ΔGsolv) as shown in equation 1.3 
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ΔGbind = ΔEMM + ΔGsolv - TΔSsolute                                                                    Eq. 1.3                                                               

where the ΔEMM represents the change in molecular mechanics potential energy upon binding. 

TΔSsolute represents the entropic contribution at temperature T in Kelvin. The configuration 

entropy can be estimated from normal mode analysis (42, 43). The solvation energy is the free 

energy change to transfer a molecule from vacuum to solvent and can be further divided into 

polar and nonpolar parts as in equation 1.4 

ΔGsolv = ΔGPB (or ΔGGB) + ΔGnp                                                         Eq. 1.4                                                        

The polar part (ΔGPB or ΔGGB) is calculated by continuum solvent PB or GB methods. 

The nonpolar part (ΔGnp) is often estimated to be proportional to the solvent accessible surface 

area (SASA) as in equation 1.5 

ΔGnp = γ SASA + β                                                                            Eq. 1.5                                       

where γ  is 0.00542 kcal/mol·Å
2
 and β is 0.92 kcal/mol from the fits of linear alkanes (34).  

 Recent studies have shown the accuracy of MM/PB(GB)SA approach relies on the length 

of MD simulation, entropy calculation, solute dielectric constant, and force field (44, 45). In 

short, the result of binding free energy has a high correlation with the length of MD simulation, 

but longer simulations do not necessarily lead to a better result. The conformational entropy has 

large fluctuations in the whole trajectory; hence a larger number of frames are required to 

achieve a converged value. The free energy results are very sensitive to the choice of dielectric 

constant, thus one should choose appropriate value based on the protein/ligand binding interface. 

The ff99 (31) force field achieved the best prediction with MM/GBSA calculations, while the 

ff99SB (26) force field did the best prediction with MM/PBSA calculations. Ligand partial 
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charges using the RESP (46) charges model gave the best performance compared to AM1-BCC 

(47) and ESP (48) charge models. Although the MM/PBSA approach has been used widely in 

many drug design studies, this method has its limitations. Structured water molecules are often 

not accounted for in this calculation. Explicitly considering structured water in the calculation 

may improve the accuracy of prediction (49). Another common limitation is that the implicit 

solvation PB(GB)SA model cannot accurately calculate solvation energy for deeply buried 

residues or ligands (50). Nevertheless, the entropy term seems to be the major source of 

uncertainty of MM/PB(GB)SA calculations (44). The overall free energy shall converge faster if 

the single-trajectory approach is used instead of the three-trajectory approach (51). For similar 

compounds, the entropy term may be neglected to reduce uncertainty, as the values are roughly 

equal (51).   

 

1.6.2.2 Free energy perturbation or pathway methods 

 

 In free energy perturbation (FEP) theory, the Hamiltonian of the target system (H1) is 

represented as the sum of the reference Hamiltonian (H0) and the perturbation term (ΔH) as 

shown in equation 1.6. 

                                                                     Eq. 1.6 

where x is the 3N Cartesian coordinates and their conjugate momenta px. 

 The difference of free energy (ΔA) between the target and the reference system can be 

written in terms of the ratio of the partition function Q1 and Q0. 

         
  

  
                                                                          Eq. 1.7 

where β is 1/kBT and   
 

     
∬                                                   Eq. 1.8 
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When substituting the partition function with the expression of the Hamiltonian (Eq. 1.8), the 

equation 1.7 become 

         〈   [          ]〉                                           Eq. 1.9 

where <…>0 denotes the ensemble average of the reference state. Because the integration of the 

kinetic term in the Hamiltonian will be cancelled out, equation 1.9 can be written as 

         〈         〉                                                        Eq. 1.10 

where ΔU is the difference of potential energy between the target and the reference systems. 

 

 One thing to be concerned is that the target and the reference systems should be very 

similar; otherwise the free energy will fluctuate and not converge. To solve this problem, the 

overall free energy can be calculated by breaking the change into N small steps using 

perturbations linked by a pathway along the target and reference states as shown in equation 1.11. 

This is why this approach is also called a pathway approach. Because the intermediates in 

equation 1.11 may have no physical meaning, this approach is also known as an alchemical 

approach. 

   ∑        
   
                                                                        Eq. 1.11 

 The FEP approach has been employed widely and one application is the thermodynamics 

integration (TI) method (52). Theoretically, the energy difference between two states can be 

calculated by numerically integrating the derivative with respect to the distance (i.e. parameter λ) 

along the path between target and reference states.  

                  ∫ 〈     〉 
 

 
                       Eq. 1.12 

                                                                  Eq. 1.13 
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where U(λ) is the λ-coupled potential function that corresponds to U(reference) for λ=0 and 

U(target) for λ=1. The integration is carried out over the average of the λ derivative of the 

coupled potential function at given λ values. 

The difference between FEP and TI approaches is shown in Figure 1.11. Both FEP and 

TI apply a parameter λ to describe the transformation between reference (λ=0) and target (λ=1) 

state. The free energy difference from the FEP approach is the difference between initial and 

final states (Figure 1.13A), while the free energy difference from TI approach is the area under 

the line since y-axis is partial derivative of the energy (Figure 1.13B). 

 

Figure 1.13. Free energy differences by (A) perturbation and (B) thermodynamics 

integration. 

 

 Depending on how the thermodynamic cycle is designed, TI can be used to calculate the 

relative binding free energy between two ligands with the same receptor or the relative binding 

free energy between wild-type and mutant receptors with the same inhibitor. For example, in a 

thermodynamic cycle, a and b represent the binding free energies for compound 1 and 2, 
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respectively. c and d are the transformation energies for compound 1 into compound 2 in the 

complex and the compound-alone environment, respectively (Figure 1.14A). The binding free 

energy can be measured through experimental approaches, but is very difficult through 

simulation approaches. On the other hand, the transformation energy can be measured through a 

numerical approach, but is very difficult to measure in experimental approaches. Because a, b, c, 

and d are within a thermodynamic cycle, the relative binding free energy (b minus a) equals to 

the relative transformation energy (c minus d). The relative binding free energy between wild-

type and mutant with same inhibitor can also be calculated in a similar way (Figure 1.14B).  

 

 

Figure 1.14. Thermodynamic cycle of (A) Two different ligands and (B) Wild-type and 

mutant receptors. 

 

 TI calculation requires complicated setup and extensive simulation time compared to LIE 

and MM/PBSA approaches. As mentioned above, TI applies a parameter λ to describe the 

transformation between reference (λ=0) and target (λ=1) state. For each λ state, in order to get a 

smooth transformation that limits the errors in the numerical integration, we have to calculate the 
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perturbations of electrostatic and van der Waals energies separately. A standard procedure of TI 

calculation for each λ state requires three steps: (1) removing the partial charges on the target 

atoms; (2) soft-core vdw transformation; and (3) adding the partial charges on the target atoms. 

A one-step transformation approach, in which electrostatic and van der Waals forces are 

simultaneously modified, has been implemented into AMBER and reproduced very similar 

results with those from the three-step transformation approach (53). But the one-step 

transformation approach may require longer time to get a converged free energy result (53). A 

most recent implementation in AMBER has made the TI calculation optimized to run with the 

pmemd program and gives 2.5 times greater computational efficiency than the sander program 

(54). 

 

1.6.2.3 The unbinding pathway method 

 

 The ligand unbinding approach is another way to calculate binding free energy. As 

binding free energy is the energy difference between the ligand-bound and ligand-free states, one 

can get the binding free energy by gradually removing the ligand from the active-site and 

calculating the potential of mean force along the path (Figure 1.15). The ligand dissociation path 

can be obtained from steered MD simulation, and the free energy along this pathway can be 

calculated via the non-equilibrium Jarzynski relationship (55-57) or equilibrium umbrella 

sampling approaches (58). Several studies have shown this approach calculates binding free 

energies comparable to experimental results (59-65). The advantage of this approach is not only 

provides relative free energy between ligand-bound and ligand-free states, but also the energy 

profile along the unbinding path(s). The energy profile along the path is very valuable for the 

study of binding kinetics because all energy barriers in the ligand unbinding path will contribute 



 

24 
 

to the net dissociation rate of the inhibitor (66). The disadvantage of this approach is that there 

might be multiple dissociation paths, thus multiple or long timescale simulations may be required 

to obtain a converged free energy. Also, the translational entropy is excluded from this approach. 

 

 

Figure 1.15. A cartoon representation of ligand unbinding path. 

 

1.6.2.4 Common limitations of free energy calculation 

 

 Accurately predicting the binding free energy is always a challenging problem for 

computational simulations. For all of the above approaches, accurate force fields are especially 

critical. Unlike quantum mechanics, molecular mechanics ignores the electronic motion and the 

force fields method is empirical. Thus, there is no perfect or correct force field and there is 

always room to improve molecular dynamics simulation accuracy. For example, new force fields 

terms like polarizable force fields have been developed to overcome the limitation of fixed 

charges models (67-75). Sampling and convergence problems are also critical for MD 

simulations, and several enhanced sampling approaches have been developed to overcome the 

problems, such as the replica exchange approach (76), adaptively biased MD (77), and 

accelerated MD (78), to name a few. Moreover, the implementation of GPU (graphics processing 
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unit) in MD simulation makes long timescale simulation much easier than before that definitely 

helps limit the convergence issue (79-81). Overall, one should bear in mind the limitation of the 

free energy calculations when applying these approaches in calculating binding free energies. 

 

1.6.3 Studying of InhA using MD simulations 

 

Several studies of InhA using MD simulation have obtained good agreement with 

experimental results. For example, the drug-resistance problem is a popular topic in InhA 

research (82-85). Clinical mutants of I16T, I21V, I47T, S94A, and I95P have been shown to 

decrease the binding affinity of the cofactor in experimental studies (86). The MD simulation 

results demonstrate that the NADH pyrophosphate moiety in I21V and I16T mutants undergoes 

considerable conformational changes to reduce its binding affinity to the receptor (82). In 

addition, other researchers have used MD simulation to study the binding affinity of the 

tautomeric forms of INH-NAD adduct (87). The tautomeric forms of the INH-NAD adduct 

caught the community’s attention because the chemically related INH-NADP adduct forms a 4R 

conformation in MTB dihydrofolate reductase but a 4S conformation of INH-NAD adduct is 

found in MTB InhA (88). The binding affinity calculation suggested that the 4S form of INH-

NAD adduct in InhA has stronger binding affinity than the 4R form, thus representing the 

predominant active form of the INH-NAD adduct in the crystal structure (87). In addition to 

InhA, our previous MD simulations and binding free energy calculations in the E. coli FabI 

system also achieved assuring agreement with the experimental results and indicated the shape of 

the inhibitor is very important for the overall binding free energies in this enzyme system (89, 

90). Moreover, another study of Plasmodium falciparum FabI also demonstrates the extreme 
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value of MD simulation in assisting the drug discovery targeting the enoyl-ACP reductase 

enzymes (91). 

 

1.6.4 Advanced MD simulation approaches used in this dissertation 

 

1.6.4.1 Partial nudged elastic band (PNEB) 

 

Nudged elastic band (NEB) is a MD simulation approach to find low-energy-path 

structures between two fixed end-point structures (92). The structures between the end-points 

structures can be treated as multiple beads connected to the previous and next beads with a string, 

and these beads are spaced evenly between the end-point structures. NEB was originally derived 

from the plain elastic band method (93), however, because the plain elastic band method has the 

tendency to cut corners in the energy landscape, NEB truncates the spring forces in directions 

perpendicular to the tangent of the path to prevent corner cutting. The force on atoms can be 

divided into perpendicular (┴) and parallel force (
║
), such as 

  F = F ┴ + F
 ║

                                                                   Eq. 1.14 

  F ┴ = -∇V(Pi) + (∇V(Pi)·τ)τ                                            Eq. 1.15 

  F
 ║

 = [ki+1(Pi+1 – Pi) – ki(Pi-Pi-1)·τ]τ                                 Eq. 1.16 

where Pi is the 3N dimensional position vector of image i, ki is the spring constant between 

image i-1 and image i, V is the potential described by the force field, and τ is the 3N dimensional 

tangent unit vector that describes the path. 
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With an additional energy minimization step (i.e. simulated annealing (94)), the NEB 

results can be used to represent the minimum-energy path (92). Partial NEB (PNEB) is a recently 

modified NEB that allows users applying spring force on a specific region. With this 

implementation, simulation of large system in explicit solvent has become applicable (95).  

 

1.6.4.2 Steered MD 

 

Steered MD applies an external force on the target atoms or molecules, and drives 

changes in the coordinate that allows us to explore biological processes on the timescale where 

MD simulation is accessible. For example, ligand unbinding process and large conformational 

changes in molecules require long timescale simulation. By applying external forces on the 

ligand to pull it from the active-site, we can study the unbinding process in a smaller timescale 

(59-64). 

 

1.6.4.3 Umbrella sampling and potential of mean force 

 

Umbrella sampling is a MD simulation approach used to obtain free energy along a 

reaction coordinate (58). By applying a bias potential to sample system’s configurations along a 

particular reaction coordinate, such as angles, distance, …etc., both rare configurations (high 

energy) and dominant configurations (low energy) are adequately sampled. The unbiased free 

energy, also called the potential of mean force (PMF), can be calculated by post-processing a 

series of umbrella sampling simulations with the weighted histogram analysis method (WHAM) 

(96-98). The limitation of this approach is that a well-defined reaction coordinate(s) is required 
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for umbrella sampling; otherwise the calculated PMF energy values will underestimate the true 

free energy. However, because protein motions involve too many atoms (degrees of freedom) to 

assign individual reaction coordinates, one is unlikely to find a perfect reaction coordinate. 

Therefore, we should treat umbrella sampling results as guides of quality and trends rather than 

quantity and absolute values.  

 

1.7 Overview of this dissertation 
 

 Since 2004, slow-onset inhibition of InhA has been characterized by enzyme kinetics 

assays. Although X-ray crystal structures provide us with an understanding of how the inhibitors 

interact in the active-site, the information provides only a static picture that cannot explain the 

mechanism of slow-onset inhibition which is a dynamic process involving large conformational 

changes. Because the goal of InhA lead optimization is to design long residence time inhibitors, 

a better understanding of the conformational change mechanism is the key component of the 

research project. The goal of my research is to understand the detailed interactions between the 

inhibitor and the receptor at the atomic level as well as to explore the possible structural 

mechanism of slow-onset inhibition. A good structural model for slow-onset inhibition requires a 

multidimensional energy landscape that defines the relative population of different 

conformational states and the free energy barriers between them. Since the atomistic structural 

transition is very difficult to measure with experimental approaches, my research applies 

advanced MD simulations to study the slow-onset inhibition mechanism at the atomic scales. 

This dissertation is arranged as follows: In chapter two, I propose the induced-fit 

conformational change mechanism for the slow-onset inhibition. In chapter three, I show the 



 

29 
 

detailed interaction between inhibitors and InhA. In chapter four, I show the free energy 

landscape along the open-closed conformational change path and demonstrate how to change the 

key interactions to control the transition state and the free energy landscape. In chapter five, I 

show the virtual screening approaches to screen new InhA inhibitors.   
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Chapter Two 

The induced-fit conformational changes of M. tuberculosis InhA: 

Insights from molecular dynamics simulation and principal 

component analysis 
 

2.1  Introduction 
 

Protein dynamics plays an important role in biological function. Protein will undergo 

conformational changes after binding of substrate/ligand, post translational modification, or in 

different solvent environments (99-104). The magnitude of conformational changes can be as 

large as involving entire protein domains or as small as some sidechain movement. For example, 

adenyl kinase (ADK), a phosphotransferase enzyme in cellular energy homeostasis, undergoes a 

large conformational rearrangement of the ATP-binding and AMP-binding domains from an 

open state to a closed state (105). The backbone RMSD between two different conformations of 

ADK is as high as 7Å. This “open-to-closed” conformational change is also found in different 

enzyme systems, such as HIV protease (106), 1-deoxy-d-ylulose-5-phosphate reductoisomerase 

(107), glutamine-binding protein (108) and formate dehydrogenase (109).  

The conformational change of protein after binding of ligands has often been explained 

by two different models: induced-fit conformational change and conformational selection (also 

called population shift) (Figure 2.1). The induced-fit model can be traced back to 1958, when 

Koshland proposed this model that the ligand-free protein (apo) structure changes its 

conformation after binding of ligand, leading to the distinct ligand-bound conformation (holo) 

(110). This model is supported by a large amount of structures from different protein systems 

showing apo and holo structures have different conformations. The conformational selection 
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model, a recently growing model based on the results of NMR and MD simulations, holds a 

different view to the induced-fit model (111). This model suggests that multiple protein 

conformations preexist but with different probabilities (i.e. conformations of open and closed 

exist at the same time, while the open conformation is the dominant state) and the dominant 

population shifts to the other one after ligand is bound. These two models with different 

viewpoints are able to explain most ligand binding mechanisms. For some ambiguous cases, it 

seems that either model can explain the ligand binding mechanism (112). A general rule has been 

suggested that the induced-fit model better explains those strong binding protein-ligand 

complexes while the conformational selection model fits better for weak binding complexes 

(113). For enzymes with lid-gate active-sites, the induced-fit mechanism seems to be more 

appropriate because the protein can only permit the ligand with an open active-site (114). 

Because induced-fit and conformation selection model are two extreme cases, a mixed-model 

has been proposed to explain semi-closed/open conformation of the maltose binding protein 

(112). In the mixed-model, the first step is a population shift triggered by ligand binding into a 

semi-closed/open state, followed by an induced-fit step to the closed state. The first step involves 

a large domain motion while the second step is only local conformational changes.  
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Figure 2.1. Induced-fit and conformational selection binding mechanism (104). 

 

 The substrate-binding loop (helix-6) of InhA behaves differently in the rapid reversible 

and slow-onset inhibitors bound complexes. The active-site loop of InhA has been hypothesized 

to control the process of slow-onset inhibition (13). With reversible inhibitors bound to the 

active-site, such as Triclosan (PDB ID: 2B35), PT3 (PDB ID: 2B36), and PT5 (PDB ID: 2B37) 

(inhibitor structures in Figure 2.2), the crystal structure has a weak electron density map 

(disordered) in the helix-6 region (Figures 2.3) (12). When InhA is bound with PT70, a slow-

onset inhibitor of InhA, helix-6 is ordered (Figure 2.4) (13). Similar phenomena are also 

observed in E. coli FabI, the homologue of InhA, where the substrate-binding loop is ordered in 

the presence of  triclosan (PDB ID:1QSG), a slow-onset inhibitor of E. coli FabI (Figure 2.4) 

(24). Based on the observations of MTB InhA and E. coli FabI, the dis/ordering of the substrate-

binding loop was hypothesized to be correlated with slow-onset inhibition of InhA, stating InhA 

shall have an ordered substrate-binding loop if a slow-onset inhibitor is bound to the enzyme 
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(13). However, a recently solved InhA structure co-crystallized with the rapid reversible inhibitor 

PT155 (PDB ID: 4OXK, 4OXN) exhibits an ordered substrate-binding loop (Figure 2.4). One 

possible reason is the crystal packing effects; however, after examining the structures, it seems 

the crystal packing effect is not the reason. Therefore, the structure-based mechanism of slow-

onset inhibition is more complicated than the concept of ordering of the substrate-binding loop. 

 

 

Figure 2.2. Structures of PT70, PT3, PT5, PT155, and triclosan. 

 

 

Figure 2.3. The triclosan, PT3, and PT5 bound InhA structures. The substrate-binding helix-

6 (red box) is missing (disordered) in the presence of rapid reversible inhibitors triclosan, PT3 

and PT5. PDB ID for triclosan, PT3 and PT5 bound InhA are 2B35, 2B36, 2B37, respectively. 
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Figure 2.4. The PT70 and PT155 bound InhA, and triclosan bound ecFabI. The ordered 

helix-6 was only found previously in the slow-onset inhibitors bound InhA. Recently, InhA 

bound with PT155, a rapid reversible inhibitor of InhA, also has an ordered helix-6. 

 

To get an idea of what kind of structural motions are correlated with the slow-onset 

inhibition of InhA, a systematic characterization of the active-site conformation and a dynamic 

view of the protein structure are required. While crystal structures provide valuable information 

regarding how the inhibitor binds to receptor at the atomic level, the results of x-ray crystal 

structures are static and neglect dynamics. A static picture, however, is insufficient to provide a 

complete picture of the kinetic properties of slow-onset inhibition, which involves a slow 

conformational change step as suggested by enzyme kinetics. Moreover, the non-physiological 

conditions used for the crystal structures such as high salt and low temperature as well as crystal 

packing effects may mislead the interpretation of kinetics data. To better understand the 

structural differences among all InhA structures as well as to obtain a dynamic view into how 

InhA interacts with the inhibitors, all InhA crystal structures were compared first, followed by a 

series of standard (unrestrained) MD simulations and structural comparisons. After analyzing all 

the available crystal structures of InhA, we found the ordered active-site loop can be further 

characterized as “closed” or “open”. The MD simulation results demonstrated the helix-6 and 7 

were very flexible when the simulations started from the open state, whether InhA was bound 

with slow-onset or with rapid reversible inhibitors. On the other hand, when the MD simulations 
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started from the closed state, the helix-6 and 7 were more stable with slow-onset inhibitor than 

with rapid reversible inhibitors. Structural comparison and principal component analysis of the 

trajectories suggested that the open conformation of InhA tended to close its active-site, 

regardless of whether it was bound with rapid reversible or slow-onset inhibitors. Conversely, 

the closed active-site tended to keep the active-site closed when slow-onset inhibitor was bound, 

whereas rapid reversible inhibitor bound InhA tended to open the active-site. These results 

implied that the open and closed states likely represent the initial EI and final EI* states as 

described in the Scheme 1.1, and the induced-fit conformational changes from open to closed 

states are likely to be the structure basis mechanism of slow-onset inhibition in the InhA system.  

 

2.2  Simulation Details 
 

2.2.1 Initial structures 

 

The tetramer InhA:NAD
+
:PT70 and InhA:NAD

+
:C16-NAC structures (PDB ID: 2X23 

(13) and 1BVR (11), respectively) were used to build the starting structures of the closed and 

open states of InhA. The inhibitor poses of PT70, PT3, PT5 and triclosan were taken from the 

crystal structures (PDB ID: 2X23, 2B36, 2B37, and 2B35, respectively). We assumed the 

inhibitors occupy in the same position, so the inhibitors share the same poses in the closed and 

open states.  
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2.2.2 Setup of Molecular Dynamics Simulation 

 

AMBER ff99SB (26) and GAFF (115) force field parameters were assigned to the 

protein and inhibitor, respectively. The partial atomic charges of each inhibitor were derived 

using RESP approach (46, 116). The RESP charges were computed using Gaussian98 (117) with 

the HF/6-31G* basis set. The force field parameters of the cofactor NAD
+
 were taken from other 

studies (118, 119). Each complex was solvated in a truncated octahedral TIP3P (120) water box 

with a minimum distance of 14 Å between the water box edge and solute, resulting in ~ 80,000 

atoms in total. The MD simulations were run at 300 K, constant 1 atm pressure, and periodic 

boundary conditions. Twenty nanosecond (ns) MD simulations were performed for each 

compound. The first 1 ns was the equilibration procedure, followed by a 19 ns production run. 

The first step of equilibration was 10,000 steps of steepest descent minimization with 100 kcal 

mol
-1

 Å
-2

 restraints on all atoms except water molecular and hydrogen atoms. The second step 

was heating the system from 100 to 300 K at constant volume over 100 ps with 100 kcal mol
-1

 Å
-

2
 restraints on non-water and non-hydrogen atoms, followed by 100 ps with the same restraints at 

constant 300 K temperature and 1 atm pressure. The third step was 250 ps MD with a restraint 

weight of 10 kcal mol
-1

 Å
-2

 on the non-water and non-hydrogen atoms at constant 300 K 

temperature and 1 atm pressure. The following steps only restrained the backbone atoms and 

gradually reduced the restraints weight from 10 to 0.1 kcal mol
-1

 Å
-2

 at constant 300 K and 1 atm. 

This was carried out by 100 ps with 10 kcal mol
-1

 Å
-2

 restraint, followed by 100 ps with 1 kcal 

mol
-1

 Å
-2

 restraint, and 100 ps with 0.1 kcal mol
-1

 Å
-2

 restraint. The last step of equilibration was 

250 ps of unrestrained MD. 

 



 

37 
 

2.2.3 Principal component analysis (PCA) 

 

Principal component analysis is an orthogonal linear transformation method that converts 

a set of observations into a set of linear variables called principal components (121). Since the 

molecular motion involves too many atoms and the pattern of motion is hard to be determined by 

“viewing” the trajectory, the advantage of PCA for trajectory analysis is that it reveals the 

dominant motion. In this study, 19 ns production trajectories were analyzed using ptraj and the 

lowest frequency motion (first mode) of each system was shown in this study. 

 

2.2.4 Inhibitor unbinding calculation 

 

Steered MD simulation approach was used to push out the inhibitor to get the initial 

unbinding path. The unbinding reaction coordinate was assumed to be the distance between the 

inhibitor and receptor. This was done by gradually pushing out the inhibitor using 3 kcal mol
-1

  

Å
-1 

force on the center of mass of backbone atoms of residues 150, 155, 190, 193, 218, 222, 225, 

261, 264, 265 and A ring of inhibitor. After the initial path was formed, umbrella sampling and 

WHAM (weight histogram analysis method) were used to calculate the free energy profile along 

the path. For the umbrella sampling, 83 windows (with interval of 0.5 Å) were performed. 5 ns 

umbrella sampling per window was performed and the first 1 ns of the trajectories were excluded 

in the free energy calculation. 
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2.3  Results and Discussion 
 

2.3.1 Closed, open, and disordered conformations  

 

After examining all 46 published PDB structures (until Dec, 2013), we found the active-

site can be characterized as closed, open and disordered based on the positions of helix-6 and 7 

(Figure 2.5). Table 2.1 lists the information of all InhA crystal structures. The major 

conformation is the open form, as found in the binary complex (InhA:NAD
+
), substrate-analogue 

bound complex (InhA:NAD
+
:C16-NAC), and most of the inhibitor-bound ternary complexes 

(InhA:NAD
+
:inhibitor). The closed conformation is found in the diphenyl ether inhibitor bound 

structures, such as PT70, PT10, and PT91. The major difference between the open and closed 

conformations is the position of helix-6. In the open conformation, helix-6 moves away from 

strand-4 (residue 95 to 98) and the distance between helix-6 and strand-4 is ~ 10 Å. In the closed 

conformation, the active-site entrance is covered by helix-6, resulting in a “closed” and “locked” 

active-site pocket. The backbone RMSD of helix-6 and 7 between the open and closed 

conformation is 4.4 Å. The disordered helix-6 is found in the binary complex and some inhibitor-

bound ternary complexes. 
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Figure 2.5. Superposing different active-site conformations. The active-site can be 

characterized as open, closed, or disordered. Representative structures are PDB ID 2AQ8 

(cyan), 1BVR (green), 2X23 (blue), and 2B35 (yellow).  
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Table 2.1. Summary of active-site conformation 

PDB 

ID 

Description Resolution 

(Å) 

Inhibitor Active-

site form 

Reference 

4OXY complex with 

NAD and inhibitor 

2.35 PT10 closed (122) 

4OYR complex with 

NAD and inhibitor 

2.30 PT91 closed (122) 

4OXN complex with 

NAD and inhibitor 

2.29 PT155 open and 

closed 

(122) 

4OXK complex with 

NAD and inhibitor 

1.84 PT155 open and 

closed 

(122) 

4BGE S94A mutant in 

complex with 

pyridomycin 

2.25 pyridomycin open (123) 

4BGI S94A mutant in 

complex with 

NAD and OH-141 

2.09 3-hydroxy-N-

[(2R,5R,6S,9S,10S,11R

)-10-hydroxy- 5,11-

dimethyl-3,7,12-trioxo-

2-(propan-2-yl)- 9-

(pyridin-3-ylmethyl)-

1,4-dioxa-8-

azacyclododecan- 6-

yl]pyridine-2-

carboxamide 

open and 

disordered 

(123) 

4BII Complex with 

pyridomycin 

1.95 pyridomycin open (123) 

4DQU D148G mutant in 

complex with 

NAD 

2.45 no inhibitor open (124) 

4DRE  complex with 

NAD 

2.40 no inhibitor open (124) 

4DTI S94A mutant in 

complex with 

NAD 

1.90 no inhibitor open (124) 

3OEW complex with 

NAD 

2.20 (4S)-2-methyl-2,4-

pentanediol 

open (125) 

3OEY T266E mutant in 

complex with 

NAD and inhibitor 

2.00 (4S)-2-methyl-2,4-

pentanediol 

open (125) 

3OF2 T266D mutant in 

complex with 

NAD and inhibitor 

2.00 (4S)-2-methyl-2,4-

pentanediol 

open (125) 

2X22 complex with 

NAD and inhibitor 

2.10 5-hexyl-2-(2-

methylphenoxy)phenol 

(PT70) 

closed (13) 
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2X23 complex with 

NAD and inhibitor 

1.81 5-hexyl-2-(2-

methylphenoxy)phenol 

(PT70) 

closed (13) 

3FNE complex with 

NAD and inhibitor 

1.98 2-(2,4-

dichlorophenoxy)-5-

(pyridin-2-

ylmethyl)phenol 

closed, 

open, and 

disordered 

(126) 

3FNF complex with 

NAD and inhibitor 

2.30 5-benzyl-2-(2,4-

dichlorophenoxy)pheno

l 

closed, 

open, and 

disordered 

(126) 

3FNG complex with 

NAD and inhibitor 

1.97 5-(cyclohexa-1,5-dien-

1-ylmethyl)-2-(2,4- 

dichlorophenoxy)pheno

l 

open (126) 

3FNH complex with 

NAD and inhibitor 

2.80 2-(2,4-

dichlorophenoxy)-5-(2-

phenylethyl)phenol 

open (126) 

2PR2 complex with 

INH-NADP 

2.50 INH-NADP open (127) 

2NSD complex with 

NAD and inhibitor 

1.90 N-(4-methylbenzoyl)-

4-benzylpiperidine 

open (128) 

2IDZ complex with 

INH-NAD 

2.00 INH-NAD adduct open (129) 

2IE0 I21V mutant in 

complex with 

INH-NAD 

2.20 INH-NAD adduct open (129) 

2IEB S94A mutant in 

complex with 

INH-NAD 

2.20 INH-NAD adduct open (129) 

2IED S94A mutant 2.14 no inhibitor open (129) 

2H9I complex with 

ETH-NAD 

2.20 ETH-NAD adduct open (128) 

2NTJ complex with 

PTH-NAD 

2.50 PTH-NAD adduct open and 

closed 

(128) 

2H7I complex with 

NAD and inhibitor 

1.62 (3S)-1-cyclohexyl-5-

oxo-n-

phenylpyrrolidine- 3-

carboxamide 

open (130) 

2H7L complex with 

NAD and inhibitor 

1.73 (3S)-n-(3-

bromophenyl)-1-

cyclohexyl-5-

oxopyrrolidine- 3-

carboxamide 

open (130) 

2H7M complex with 

NAD and inhibitor 

1.62 (3S)-1-cyclohexyl-n-

(3,5-dichlorophenyl)- 

5-oxopyrrolidine-3-

open (130) 



 

42 
 

carboxamide 

2H7N complex with 

NAD and inhibitor 

1.90 (3S)-n-(5-chloro-2-

methylphenyl)-1-

cyclohexyl- 5-

oxopyrrolidine-3-

carboxamide 

open (130) 

2H7P complex with 

NAD and inhibitor 

1.86 (3S)-n-(3-chloro-2-

methylphenyl)-1-

cyclohexyl- 5-

oxopyrrolidine-3-

carboxamide 

open (130) 

2NV6 S94A mutant in 

complex with 

INH-NAD 

1.90 INH-NAD adduct open (131) 

2AQ8 complex with 

NAD 

1.92 no inhibitor open (132) 

2AQH I21V mutant in 

complex with 

NAD 

2.01 no inhibitor open (132) 

2AQI I47T mutant in 

complex with 

NAD 

2.20 no inhibitor open (132) 

2AQK S94A mutant in 

complex with 

NAD 

2.30 no inhibitor open (132) 

2B35 complex with 

NAD and inhibitor 

2.30 Triclosan disordered (12) 

2B36 complex with 

NAD and inhibitor 

2.80 5-pentyl-2-

phenoxyphenol (PT3) 

disordered (12) 

2B37 complex with 

NAD and inhibitor 

2.60 5-octyl-2-

phenoxyphenol (PT5) 

disordered (12) 

1P44 complex with 

NAD and inhibitor 

2.70 5-{[4-(9h-fluoren-9-

yl)piperazin-1-

yl]carbonyl}- 1h-indole 

open (133) 

1P45 complex with 

NAD and inhibitor 

2.60 Triclosan open and 

closed 

(133) 

1BVR complex with 

NAD and C16-

fatty-acyl-substrate 

2.80 trans-2-hexadecenoyl-

(n-acetyl-cysteamine)- 

thioester 

open (11) 

1ZID complex with 

INH-NAD 

2.70 INH-NAD adduct open (134) 

1ENY complex with 

NAD 

2.20 no inhibitor open (135) 

1ENZ complex with 

NAD 

2.70 no inhibitor open (135) 
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 Because the active-site conformation can be characterized as open and closed, it would be 

interesting to know what kind of conformational change will happen to the active-site helix-6 in 

the presence of the inhibitors, especially in the presence of rapid reversible inhibitors; since the 

crystal structures do not have clear structure in this region. We speculated that the slow-onset 

inhibitors bound InhA should remain a stable closed active-site conformation while the rapid 

reversible inhibitors bound InhA would have flexible helix-6 when the simulations started from 

the closed conformation. On the contrary, because the open conformation is likely to be the 

initial conformation which inhibitors encounter, it would be interesting to know what kind of 

conformational change will happen to the InhA upon binding of the slow-onset and rapid 

reversible inhibitors. We speculated that all slow-onset and rapid reversible inhibitors bound 

InhA would move toward to a closed active-site when the simulations started from the open 

conformation. 

 

2.3.2 MD simulation started from the closed conformation 

 

To get a better idea why InhA with PT70 has an ordered active-site loop while InhA with 

triclosan, PT3 or PT5 has a disordered active-site loop, a series of MD simulations were 

performed with these inhibitors. Because the crystal structures already show that InhA has an 

ordered helix-6 with slow-onset inhibitor PT70 and this helix becomes disordered with rapid 

reversible inhibitors triclosan, PT3, and PT5, we hypothesized the active-site loop region 

(helix-6 and 7) would remain in a stable state in the PT70 bound complex when the simulation 

started from the closed conformation. On the other hand, this active-site loop region would 

become flexible with the rapid reversible inhibitors triclosan, PT3, and PT5. 
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Because PT70 bound InhA has a closed conformation, it is expected that the simulation 

also have a stable closed conformation. To know whether the structure deviates from the initial 

crystal structure, we measured the whole protein backbone RMSD (root mean square deviation). 

As expected, the helix-6 and 7 region was stable with the slow-onset inhibitor PT70. During the 

20 ns simulation, the protein had an average backbone RMSD ~ 1.0 Å compared to the crystal 

structure, indicating the protein structure was stable (Figure 2.6A). Upon a closer examination of 

the substrate-binding loop region, the average backbone RMSD of the helix-6 and 7 region was ~ 

1.7 Å compared to the crystal structure (Figure 2.6B). The low RMSD values suggested the 

protein does not undergo large conformational change. In order to know the flexibility of protein 

structure, RMSF (root mean square fluctuation) referenced to the average structure was also 

calculated. As shown in Figure 2.6C, the RMSF of helix-6 was below 1 Å, suggesting helix-6 

was stable. The MD result, as expected, is consistent with the observations made from crystal 

structure, demonstrating that InhA with PT70 has a stable and ordered helix-6. 

 

 

 

Figure 2.6. RMSD and RMSF of the InhA:NAD
+
:PT70 complex. (A) Backbone RMSD 

of the whole protein. (B) Backbone RMSD of the Helix-6&7 region. (C) Backbone RMSF 

of the helix-6&7 region. RMSD was referenced to the closed crystal structure. RMSF was 

referenced to the average structure. 
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On the contrary, the MD simulation results showed that the helix-6 region became 

flexible in the presence of rapid reversible inhibitors. From previous enzyme kinetics and 

crystallography results, we know triclosan, PT3, and PT5 are rapid reversible inhibitors of InhA 

and the active-site helix-6 is disordered. To know whether MD simulations also demonstrate a 

flexible helix-6 conformation, we simulated the triclosan, PT3, and PT5 bound complexes 

started from the closed conformation and measured the RMSD and RMSF. In the 20 ns MD 

simulation result of InhA:NAD
+
:triclosan complex, the protein was more flexible than the above 

InhA:NAD
+
:PT70 complex, with a higher backbone RMSD value between 0.8 to 1.7 Å. It is 

noticed that some monomers had larger RMSD (Figure 2.7A). The highest RMSD of helix-6 and 

7 region reaches ~ 5.8 Å (Figure 2.7B). The RMSF plot also suggested that helix-6 was more 

flexible in the triclosan bound complex (Figure 2.7C) than in the PT70 bound complex 

(Figures 2.6C). In addition to triclosan, the other two rapid reversible inhibitors PT3 and PT5 

bound complexes also had more flexible helix-6 and 7 (Figure 2.8). Structural analyses of the 

initial and last frames of trajectories illustrated that helix-6 moved to a semi-closed conformation 

(Figure 2.9).  
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Figure 2.7. RMSD and RMSF of the InhA:NAD
+
:triclosan complex. (A) Backbone RMSD of 

the whole protein. (B) Backbone RMSD of the helix-6&7 region. (C) Backbone RMSF of the 

helix-6&7 region. RMSD was referenced to the closed crystal structure. RMSF was referenced to 

the average structure. 

 

 

Figure 2.8. RMSD and RMSF of the InhA:NAD
+
:PT3 (A~C) and InhA:NAD

+
:PT5 (D~F) 

complexes. (A) and (D) Backbone RMSD of the whole protein. (B) and (E) Backbone RMSD of 

the helix-6&7 region. (C) and (F) Backbone RMSF of the helix-6&7 region. RMSD was 

referenced to the closed crystal structure. RMSF was referenced to the average structure. 
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Figure 2.9. The last snapshots of monomer-3 from MD simulations. (A) 

InhA:NAD
+
:triclosan. (B) InhA:NAD

+
:PT3. (C) InhA:NAD

+
:PT5. The active-site helix-6 

moved toward to a more open conformation. First and last snapshopts are colored in red and 

blue, respectively. 

 

2.3.3 MD simulation started from the open conformation 

 

 The open conformation of InhA is observed in the apo, binary, substrate bound, and most 

inhibitor bound structures (Table 2.1). As shown in Figure 2.10, the active-site entrance is 

covered and blocked by helix-6 in the closed conformation; it is unlikely that the inhibitor binds 

to the closed conformation during the early stage of the enzyme-inhibitor association step. 

Instead, it is more likely the protein follows the induced-fit mechanism in which the inhibitor 

bind to the open conformation of InhA, which has a wider active-site entrance to allow an 

inhibitor to dock in, followed by a conformational change, leading to the closed state. Because 

the open conformation is likely to be the initial conformation which inhibitors encounter, it 

would be interesting to know what kind of conformational change will happen to the InhA upon 

binding of the slow-onset and rapid reversible inhibitors. To know how the open helix-6 and 7 

region acts with the inhibitors, we performed same simulations but used the substrate bound 

InhA as the starting structure. We hypothesized the InhA with rapid reversible inhibitors would 
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have a flexible helix-6 as shown in the crystal structure. For the slow-onset inhibitor PT70 bound 

InhA, we hypothesized the helix-6 region would move toward to a more closed conformation. 

 

 

Figure 2.10. Surface representation of the closed and open active-site conformations. The 

substrate entrance is covered and blocked in the closed conformation (left). 

 

For the slow-onset complex InhA:NAD
+
:PT70, the average backbone RMSD value 

(referenced to the open conformation) was ~ 1.3 Å and is slightly higher than the above results 

started from the closed conformation (Figures 2.11A and 2.6A). Not only was RMSD value 

higher, the RMSF value was also higher than the closed state (~ 3 Å v.s. 1 Å). The high RMSD 

and RMSF values of the helix-6 and 7 regions suggested helix-6 is flexible (Figures 2.11B, and 

2.6B). Taking monomer-1 as an example, the superimposed structures of the first and last frames 

of the trajectory demonstrate that helix-6 moved toward to a more closed conformation (Figure 

2.12).  
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Figure 2.11. RMSD and RMSF of the InhA:NAD
+
:PT70 complex. (A) Backbone RMSD of 

the whole protein. (B) Backbone RMSD of the helix-6&7 region. (C) Backbone RMSF of the 

helix-6&7 region. RMSD was referenced to the open crystal structure. RMSF was referenced to 

the average structure. 

 

 

 

Figure 2.12. The first and last frames of monomer-1 from the InhA:NAD
+
:PT70 complexes. 

First and last frames are colored in red and blue, respectively. The helix-6 moves toward to a 

more closed conformation. 

 

InhA with rapid reversible inhibitors started from the open conformation also has a 

flexible helix-6. For triclosan bound InhA, the backbone RMSD fluctuates at the early stage of 

simulation, suggesting helix-6 and 7 moved away from the open conformation (Figures 2.13A, 

2.13B). The high RMSF value also indicates the helix-6 and 7 region is flexible (Figure 2.13C). 
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Similar to the InhA:NAD
+
:PT70 complex, structural comparison of the initial and final 

snapshots indicated that the helix-6 moved toward to a more closed conformation (Figure 2.14). 

The other two rapid reversible inhibitor complexes InhA:NAD
+
:PT3 and InhA:NAD

+
:PT5 also 

have flexible helix-6 supported by their high RMSD and RMSF values (Figure 2.15).  

 

 

Figure 2.13. RMSD and RMSF of the InhA:NAD
+
:triclosan complex. (A) Backbone RMSD 

of the whole protein. (B) Backbone RMSD of the helix-6&7 region. (C) Backbone RMSF of the 

helix-6&7 region. RMSD was referenced to the open crystal structure. RMSF was referenced to 

the average structure. 

 

 

 

Figure 2.14. The first and last frames of monomer-1 from the InhA:NAD
+
:triclosan 

complexes. First and last frames are colored in red and blue, respectively. The helix-6 moves 

toward to a more closed conformation. 
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Figure 2.15. RMSD and RMSF of the InhA:NAD
+
:PT3 (A~C) and InhA:NAD

+
:PT5 (D~F) 

complexes. (A) and (D) Backbone RMSD of the whole protein. (B) and (E) Backbone RMSD of 

the helix-6&7 region. (C) and (F) Backbone RMSF of the helix-6&7 region. RMSD was 

referenced to the open crystal structure. RMSF was referenced to the average structure. 

 

2.3.4 Principal components analysis (PCA) 

 

The 20 ns regular (unrestrained) MD simulations revealed the dynamic properties of the 

helix-6 and 7 region. It is interesting to know the motion of helix-6&7 and quantify the kind of 

motion that may contribute to the slow-onset inhibition. Although comparing the simulation 

trajectories, as those shown in Figures 2.9, 2.12 and 2.14, already implied the active-site has an 

open-to-closed or closed-to-open motion, however, it would be better to have a quantitative 

method to measure this motion. Here, we used principle components analysis (PCA) method to 

decompose the major motion. PCA is basically an eigenvector-based multivariate analysis: it 

helps us to find out the major eigenvector (with respect to the largest eigenvalue) of each atom in 
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the trajectories. For the MD simulations started from the closed conformation, we know the 

helix-6 had a larger motion in the rapid reversible inhibitors (triclosan, PT3, and PT5) bound 

complexes. The PCA results demonstrated that the helix-6 region has an open-closed motion, 

however this motion is not an “ideal” open-closed motion (Figures 2.16 and Figure 2.17). An 

“ideal” open-closed motion is a direct path between the crystal structures open and closed 

conformations (Figure 2.17A). The motions from the PCA seem to perpendicular to the ideal 

open-closed motion. One of the possible explanations is that we only performed single 

simulation for each inhibitor bound complexes, and this would bias the PCA results. Multiple 

runs will improve the quality of the results. If we assume multiple different runs have these 

similar results, a possible explanation is that the ideal open-closed path is not an energy 

favorable path; the helix-6 need to detour to find a low energy path. Examining the residues on 

the helices 6 and 7, we found there are several hydrophobic and bulky sidechain residues, 

particularly the sidechain of residues M199, V203, and I215 are packing to each other, forming 

steric clashes (Figure 2.17B). It is possible the residues bump to each other during the active-site 

open-closed motion, so that the helix-6 has to move to another direction to avoid the steric 

clashes. 
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Figure 2.16. The PCA motion vectors calculated based on the simulations started from the 

closed conformation. Rapid reversible inhibitors bound complexes seem to have a closed-to-

open motion. The arrows only show one direction from the starting structure. Figures were 

generated using the VMD plugin NMWiz (136).  
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Figure 2.17. The (A) The PCA, ideal, and detour open-closed motions and (B) hydrophobic 

residues on helices 6 and 7. 

 

For the simulations started from the open conformation, all inhibitor bound complexes 

had a flexible helix-6. As shown in Figures 2.12, 2.14, both rapid reversible inhibitors (triclosan, 

PT3 and PT5) and slow-onset inhibitor (PT70) bound complexes have a semi-open active-site 

conformation after 20 ns simulation. From the PCA calculation, the active-site helix-6 seems to 

also have a detour open-closed motion: the PCA vectors are not parallel the open-closed path 

(Figure 2.18).  
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Figure 2.18. The PCA motion vectors calculated based on the simulations started from the 

closed conformation. Both slow-onset and rapid reversible inhibitors bound complex seem to 

have an open-to-closed motion. The arrows only show one direction from the starting structure. 

Figures were generated using the VMD plugin NMWiz (136). 

 

2.3.5 Inhibitor unbinding calculation 

 

 Because the active-site entrance is blocked in the closed conformation (Figure 2.10), an 

inhibitor is unlikely to bind the closed conformation at the initial enzyme-inhibitor association 

step. Instead of this, an inhibitor is more likely to bind the open conformation, followed by a 
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conformational change, leading to the closed conformation. The above MD simulations imply 

the active-site has an open-closed motion and the open-closed motion is likely to be the 

structural isomerization step in the slow-onset inhibition mechanism. However, it is also possible 

the initial inhibitor binding step is the rate-limiting step where experiments measure; because the 

inhibitor is competing the active-site pocket with the substrate, the slow-onset inhibition property 

could happen if an inhibitor moves slowly from the active-site gate to the pocket. If this is the 

case, the inhibitor binding step should encounter energy barriers. To understand the inhibitor 

association process is a challenging task with current MD simulation techniques. Although a 

long timescale MD simulation (μs and ms) may be able to capture the event of an inhibitor 

finding the binding site (137), it is still a computationally expensive task. Alternatively, the 

inhibitor unbinding calculation is a more feasible approach and could provide information about 

the reverse binding step. There have been several studies that applied steered MD to generate the 

ligand unbinding process, and the calculated binding free energies have very good agreements 

with the experimental results (59-65). The unbinding calculation provides not only the free 

energy difference (ΔG) between the bound and unbound states, but also the energy profile along 

the unbinding path. The energy profile can help us to discover energy barrier during the inhibitor 

unbinding step. 

 To understand whether the inhibitor dissociating process has bumpy barrier, we applied 

the steered MD for the PT70 bound complex. Because the open conformation of InhA is likely 

to be the EI state in the two-step inhibitor binding model (Scheme 1.1B), we simulated the 

inhibitor unbinding process started from the open conformation. We used steered MD method to 

gradually push off the PT70 from the active-site based by increasing the distance between the 

center of mass of yellow atoms (receptor) and the ligand (Figure 2.19), followed by the umbrella 
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sampling/WHAM methods to obtain the free energy along this unbinding path. We initially 

performed 1 ns umbrella sampling and found the free energies were not converged, and then we 

extended the simulation to 4 ns. 

 

 

Figure 2.19. The unbinding path of PT70. The inhibitor was gradually pushed out the active-

site by increasing the distance between inhibitor and some receptor atoms (yellow). 

 

The free energy difference between the lowest point (bound state) and the plateau state 

(unbound state) is ~ 9 kcal/mol (Figure 2.20, 4 ns result) and this value is close to the 

experimental result (-11.05 kcal/mol; based on Ki = 7.8 nM (13)). The 2 kcal/mol difference may 

be due to the translational entropy which was not accounted for in this calculation. A review 

paper has shown the translational and rotational entropy for small ligands binding to proteins is 

estimated to be 4 - 5 kcal/mol (138).  
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Figure 2.20. The energy profile of PT70 dissociation from the active-site. There is no 

significant bump barrier during the inhibitor unbinding path. The errorbar is the difference 

between two independent runs. 

 

There is no significant bumpy barrier along the binding path. Another observation from 

the unbinding simulation is that the free energy increased gradually during the inhibitor 

dissociation process, reaching a plateau state when the inhibitor is completely out of the active-

site. It is noted that the energy of the binding path is smooth without having bumpy barriers. This 

result seems to suggest that the EI to E+I process is not the key step causing slow-onset 

inhibition for PT70.  
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 As mentioned previously, the inhibitor unbinding may require long timescale calculations 

to get a converged result. In our case, the first 1 ns and 2 ns results are not converged, but seems 

to converge at 4 ns (Figure 2.20). Because the inhibitor unbinding process is likely to have 

multiple paths, particularly a radial pattern, using one reaction coordinate is not a good choice; 

inhibitor can move to different spots in the other orthogonal space. Therefore, a long timescale 

simulation is commonly used to limit the sampling problem. Introduction another orthogonal 

reaction coordinate(s) could be able to limit the converged problem as well as to improve the 

quality of energy profile. Since we only use one reaction coordinate, in the future it would be 

better to introduce more precise reaction coordinate to get a more accurate inhibitor unbinding 

energy profile.  

 

2.3.6 The hypothesis of open-to-closed structural changes for slow-onset inhibition 

 

Based on the results of X-ray crystal structures and MD simulations, we proposed the 

open-to-closed conformational changes mechanism for the slow-onset inhibition of InhA. The 

summary of crystallographic and MD simulations results are listed below. 

1. The InhA:NAD
+
 complex and the substrate bound (InhA:NAD

+
:C16-NAC) complex 

have open active-site conformations, while the slow-onset inhibitor bound InhA has a 

closed active-site conformation. Because the active-site entrance is blocked in the 

closed active-site, it is unlikely that the inhibitor initially binds to the closed InhA. 

Instead, it is more likely the inhibitor binds to the open conformation, which is the 

substrate bound conformation. These observations imply the open conformation is the 

initial EI state. 
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2. All rapid reversible and slow-onset inhibitor bound InhA complexes started from the 

open conformation led to a semi-closed active-site conformation after 20 ns MD 

simulations. From the analyses of the MD simulation trajectories, the helix-6 and 7 

region has an open-to-closed motion, suggesting the enzyme tends to close its active-

site in the presence of inhibitor. 

3. When simulation started from closed conformation, InhA maintains a stable and 

closed active-site when bound with slow-onset inhibitor, but has flexible helix-6 with 

rapid reversible inhibitors bound. From the crystal structure observation, the active-

site helix-6 is ordered with PT70, but disordered with rapid reversible inhibitors 

triclosan, PT3 and PT5. MD simulations demonstrated the PT70 bound InhA has a 

relatively more stable helix-6 conformation than rapid reversible bound InhA. This 

suggests that the closed conformation is likely to be the final EI* state and only the 

slow-onset inhibitor can stably reside in this type of active-site. 

4. The inhibitor unbinding calculation showed that there is no significant bump barrier 

during the ligand binding process. This seems to rule out the initial inhibitor binding 

step is the rate-limiting step where kinetics studies measured. 

Based on all the above preliminary MD simulation results, we proposed the open and 

closed conformations represent the initial EI state and final EI* state, respectively and the 

induced-fit conformational change from the open to closed states is highly like to explain the 

two-step slow-onset binding mechanism (Figure 2.21). Because the MD simulations we show in 

this chapter are preliminary observations from only four inhibitors bound complexes, the 

summary we draw here may not true for other inhibitors. However, since our purpose here is to 

get an idea of what kind of motions may correlate with the slow-onset inhibition, we found the 
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open-closed conformational change is highly possible to be the isomerization step. A more 

detailed study of the open-closed conformational change is presented in chapter four. In chapter 

four, we applied pathway sampling approach along the open-closed path for different inhibitors 

bound complexes and obtained the energy profiles during the active-site closing step.  

 

 

Figure 2.21. The open-closed conformational changes model for the slow-onset inhibition of 

InhA. In this model, open and closed conformations represent EI and EI* states, respectively. 

 

2.4  Summary 
 

To understand why certain inhibitors have ordered helix-6 while others do not, a 

systematic characterization of all InhA structures was done first, followed by a series of MD 

simulations. After analyzing all the available InhA structures, we found the ordered active-site 

loop can be further characterized as “closed” or “open”. The MD simulation started from the 
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open conformation had a flexible helix-6 in both slow-onset and rapid reversible inhibitors 

bound InhA complexes. Conversely, when the MD simulations were started from the closed 

conformation, the helix-6 region remained stable only with slow-onset inhibitors. Further 

principal component analysis of the trajectories indicated that the open active-site has a motion 

of closing active-site. On the contrary, the closed active-site tends to keep the active-site closed 

only when the slow-onset inhibitor is bound.  The crystallographic and MD studies demonstrate 

that the closed conformation of InhA is the stable state where slow-onset inhibitors reside, 

implying the closed conformation is the EI* state in the two-step binding model. On the other 

hand, the open conformation is likely to be the EI state where an inhibitor initially binds to. 

Based on these results, we proposed the open-to-closed conformational changes mechanism for 

the slow-onset inhibition of InhA, where the open and closed states represent EI and EI* states, 

respectively. More detailed study of the open-closed conformational change is shown in chapter 

four. 
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Chapter Three  

How robustly does the MM/PBSA approach reproduce the binding 

free energy in the InhA system? 
 

3.1  Introduction 
 

Computation plays an important role in assisting lead optimization by predicting the 

interaction between the inhibitor and the target. As mentioned in chapter one, there are several 

different computational approaches people commonly use in calculating protein-ligand binding 

free energy. One can decide which approach based on the accuracy and computationally 

efficiency. For example, docking approach provides a fast but less accurate result, while the free 

energy perturbation (FEP) and thermodynamics integration (TI) method give most accurate 

results but are computationally expensive. The molecular mechanics/Poisson-Boltzmann surface 

area (MM/PBSA) approach is a post-processing approach that requires less computing power 

than the FEP and TI methods but the prediction is less reliable than FEP and TI method (139). 

Although the MM/PBSA is less accurate than the FEP and TI methods, the computationally 

efficient and acceptable prediction make it be widely used in the studies of protein-ligand and 

protein-protein interactions (44). A further advantage of MM/PBSA approach is that the 

interaction energy can be decomposed into per-residue level, providing additional insights into 

the energetic of the investigated system.  

To know whether the MD simulation can robustly predict the binding free energy and 

further use these results to better understand the mechanism of slow-onset inhibition in the InhA 

system, 10 inhibitors (5 rapid reversible and 5 slow-onset inhibitors) with known experimental 
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binding affinity ranging from µM to pM were selected for the MM/PBSA simulations. Since the 

active-site conformation of InhA is characterized as closed or open, we performed the MD 

simulations for both closed and conformations. 

The binding free energy, calculated from the MM/PBSA approach, had a good 

correlation with the experimental results, suggesting the MD simulation reproduces the trend of 

inhibitor binding in the InhA system. The calculated binding free energies are in consistent with 

the crystal structure observations, demonstrating that the slow-onset inhibitors favor the closed 

conformation while the rapid reversible inhibitors do not have a strong preference for the closed 

or open conformation. Further energy decomposition analyses show that the van der Wall (vdW) 

interaction is the most important interaction between inhibitor and enzyme. Per-residue energy 

decompositions indicate that residues G96, F149, Y158, M161 and V203 contribute most to the 

inhibitor binding. 

 

3.2  Simulation details 
 

3.2.1 Initial structures 

 

 The InhA:NAD
+
:PT70 and InhA:NAD

+
:C16-NAC tetramer structures (PDB ID: 2X23 

(13) and 1BVR (11), respectively) were used to build the starting structures of closed and open 

states. For those inhibitors that do not have crystal structures, the initial poses of inhibitor were 

obtained from molecular docking with DOCK 6.3 package (140). The sphere and grid files were 

generated from SPHGEN and GRID modules of DOCK 6.3, respectively. The grid file for the 

grid-based energy scoring had a space of 0.3 Å. Default parameters were used in the flexible 
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docking (140, 141). We assumed that the analogues occupy similar position as PT70, thus results 

with a lowest RMSD value in the diphenyl ether moiety were chosen as the initial structures. 

 

Table 3.1. List of inhibitors studied in this chapter. 

Name Structure 

Slow-

onset 

inhibitor 

Ki 

(nM) 
 Name Structure 

Slow-

onset 

inhibitor 

Ki* (nM) 

Triclosan 
 

No 
220 ± 

20 
 PT70 

 

Yes 
0.04 ± 

0.01 

PT3 

 

No 
11.8 ± 

4.5 
 PT82 

 

Yes 
0.01 ± 

0.00 

PT4 

 

No 
9.4 ± 

0.5 
 PT91 

 

Yes 
0.96 ± 

0.13 

PT5 

 

No 
1.1 ± 

0.2 
 PT92 

 

Yes 
0.20 ± 

0.05 

PT52 
 

No 5000  PT119 

 

Yes 
2.14 ± 

0.35 

Experimental Ki values were taken from (13, 142). 

 

3.2.2 Setup of Molecular Dynamics Simulation 

 

AMBER ff99SB (26) and GAFF (115) force field parameters were assigned to the 

protein and inhibitor, respectively. The partial atomic charges of each inhibitor were derived 

from the RESP approach (46, 116). The RESP charges were computed using Gaussian98 (117) 

with the HF/6-31G* basis set. The force field of cofactor NAD
+
 was taken from other studies 

(118, 119). Each complex was solvated in a truncated octahedral TIP3P (120) water box with a 

minimum distance of 14 Å between the water box edge and solute, resulting in ~ 80,000 atoms in 
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total. The MD simulations were run at 300 K under constant 1 atm pressure and periodic 

boundary conditions. 20 ns MD simulation was performed for each compound. The first 1 ns was 

the equilibration procedure, followed by a 19 ns unrestrained production run. The first step of 

equilibration was 10,000 steps of steepest descent minimization with 100 kcal mol
-1

 Å
-2

 restraints 

on all atoms except water molecular and hydrogen atoms. The second step was heating the 

system from 100 to 300 K at constant volume over 100 ps with 100 kcal mol
-1

 Å
-2

 restraints on 

non-water and non-hydrogen atoms, followed by 100 ps with the same restraints at constant 300 

K temperature and 1 atm pressure. The third step was 250 ps MD with restraint weight of 10 kcal 

mol
-1

 Å
-2

 on the non-water and non-hydrogen atoms at constant 300 K temperature and 1 atm 

pressure. The following steps only restrained the backbone atoms and gradually reduced the 

restraints weight from 10 to 0.1 kcal mol
-1

 Å
-2

 at constant 300 K and 1 atm. This was carried out 

by 100 ps with 10 kcal mol
-1

 Å
-2

 restraint, followed by 100 ps with 1 kcal mol
-1

 Å
-2

 restraint, and 

100 ps with 0.1 kcal mol
-1

 Å
-2

 restraint. The last step of equilibration was 250 ps of unrestrained 

MD. 

 

3.2.3 Molecular Mechanics/Poisson-Boltzmann surface (MM/PBSA) 

 

The binding free energy was calculated from the 19 ns production simulation trajectories 

(1900 frames) using the mmpbsa.py program (34, 143). To reduce the noise and cancel the errors, 

single trajectory approach was used (44). The dielectric constant of 78.5 and 1 were assigned to 

exterior and interior, respectively. The conformational entropy was estimated using normal mode 

analysis (144, 145). Because the normal mode analysis is computationally expensive, to reduce 

the computing time we skipped every 10 frames. Thus, 190 frames were calculated. 
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3.2.4 Energy decomposition 

 

The energy decomposition was calculated using MM-GBSA approach. The non-bonded 

energy terms (vdW and electrostatic) between inhibitor and receptor were decomposed into per-

residue level. This was done by using the SANDER program where idecomp flag was set to 2. 

 

3.3  Results and Discussion 
 

 To better understand whether the MD simulation can robustly predict the binding affinity 

in the InhA system, five rapid reversible and five slow-onset inhibitors with known experimental 

binding affinity were selected. We performed 20 ns MD simulations for each inhibitor bound to 

the biological assembly tetramer closed and open conformations, and used MM/PBSA approach 

to calculate the binding free energies. We speculated that, for the slow-onset inhibitors, since the 

slow-onset inhibitors bound crystal structures have a closed active-site conformation, the 

calculated binding free energies in the closed conformation would have more favorable values 

than those obtained in the open conformation. Moreover, as mentioned in chapter two, we 

speculated the closed state is likely to be the EI* state, so we hypothesized that the experimental 

binding affinities would have better correlation with those calculated from the closed state than 

those from the open state. For the rapid reversible inhibitors, because the crystal structures (PDB 

ID: 2B35, 2B36, 2B37) have missing electron density in the helix-6 region, we speculated that 

the rapid reversible inhibitors will not have a strong preference for the closed and open 

conformations. 
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3.3.1 MD simulation stability started from the closed conformation 

 

To estimate whether the MD simulations were in a stable stage, structural properties were 

monitored during the course of the trajectories. Because the slow-onset inhibitor PT70 bound 

crystal structure has a closed conformation, we speculated that the other slow-onset inhibitors 

bound complexes started from the closed conformation would also maintain a stable closed 

conformation. On the contrary, since the rapid reversible inhibitors bound complexes have a 

disordered helix-6, the rapid reversible inhibitors bound complexes would be more flexible.  

As expected, in the presence of slow-onset inhibitors, the receptor was stable during the 

20 ns course of MD simulation. From the measurement of backbone RMSD of the whole protein, 

it showed that the RMSD was always below 1.3 Å (Figure 3.1). Taking PT70 bound complex as 

an example, all monomers had RMSD values ~1.0 Å during the 20 ns simulation, suggesting the 

receptor maintained the initial closed conformation (Figure 3.1A). As for other slow-onset 

complexes, the RMSDs were slightly higher than the InhA:NAD
+
:PT70 complex, but the RMSD 

values were always below 1.3 Å. The slightly higher RMSDs could be due to the starting 

structure is taken from the PT70 bound complex, so that other inhibitor bound complexes 

required some structural relaxations. Overall, the RMSD measurements demonstrate that the 

receptor remained in a stable state in the presence of slow-onset inhibitors. 
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Figure 3.1. InhA backbone RMSD bound with different slow-onset inhibitors. (A) PT70. (B) 

PT82. (C) PT91. (D) PT92. (E) PT119. These simulations were started from the closed 

conformation. RMSD was referenced to the initial closed conformation. 

 

For the rapid reversible inhibition complexes, because the crystal structures have a 

disordered helix-6, we speculated that the helix-6 would not maintain a stable closed 

conformation. Based on the RMSD measurements, some monomers had higher RMSD values 

(Figure 3.2). For example, the RMSD of monomer-3 went up to 2.4 Å in the 

InhA:NAD
+
:triclosan complex (Figure 3.2A). Similar results were found in the PT3, PT5, and 

PT52 bound complexes, showing some monomers deviated from the starting closed 

conformation (Figures 3.2B ~ 3.2E). Because these were only 20 ns MD simulations, it is 

possible that other monomers would also behave the same if the simulations run longer.  
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Figure 3.2. InhA backbone RMSD bound with different rapid reversible inhibitors. (A) 

triclosan. (B) PT3. (C) PT4. (D) PT5. (E) PT52. These simulations were started from the closed 

conformation. RMSD was referenced to the initial closed conformation. 

 

3.3.2 MD simulation stability started from the open conformation 

 

To gauge whether the receptor were in a stable stage, RMSD were monitored during the 

course of the trajectories. Because the slow-onset inhibitor bound InhA have a closed active-site 

conformation, we speculated that the active-site will move away from the open conformation 

when the simulations started from the open conformation. For the rapid reversible inhibitors, 

since the crystal structures have a flexible helix-6, we speculated the RMSD values would 

fluctuate during the course of the trajectories. 

The MD simulation results showed, as expected, that the receptor deviated from the 

starting open conformation. For the slow-onset inhibitor bound complexes, the average RMSD 

was ~ 1.7 Å (Figure 3.3). Not like the results started from the closed conformation, the RMSD 
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fluctuates between 1.0 ~ 2.5 Å during the 20 ns simulation. Similar flexible phenomena were 

found in the rapid reversible inhibitor bound complexes, exhibiting a higher RMSD values than 

those results started from the closed conformation (Figure 3.4).  

In summary of these measurements of protein backbone RMSD, InhA had a relative 

higher RMSD values when the MD simulations started from the open conformation regardless 

with slow-onset or rapid reversible inhibitors. On the contrary, when simulations started from the 

closed conformation, receptor was more stable in the presence of slow-onset inhibitors.  

 

 

Figure 3.3. InhA backbone RMSD bound with different slow-onset inhibitors. (A) PT70. (B) 

PT82. (C) PT91. (D) PT92. (E) PT119. These simulations were started from the open 

conformation. These simulations were started from the open conformation. RMSD was 

referenced to the initial open conformation. 
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Figure 3.4. InhA backbone RMSD bound with different rapid reversible inhibitors. (A) 

triclosan. (B) PT3. (C) PT4. (D) PT5. (E) PT52. These simulations were started from the open 

conformation. These simulations were started from the open conformation. RMSD was 

referenced to the initial open conformation. 

 

3.3.3 MM/PBSA binding free energy calculated from the closed and open states 

 

To know whether MD simulation can robustly predict the binding affinity in the InhA 

system as well as to get a better understanding of what kind of non-bonding interaction (van der 

Waals or electrostatics) controls the inhibitor binding, we used MM/PBSA approach to calculate 

the binding free energy. Because the MM/PBSA method is a post-processing calculation 

approach, the quality of the binding free energy value depends on the resulted trajectories. From 

the above RMSD measurements, it has already shown some receptor-ligand complexes were 

very flexible. It is possible that the simulation length is not enough. Studies have shown that 

longer MD simulation is not always necessary to achieve better prediction for the MM/PBSA 

approach; particularly a 5 ns MD simulation is enough (44, 45). Moreover, the effective 
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sampling is mostly coupled with the accuracy of force field not the length of MD simulation. 

Therefore, when the single trajectory protocol is used, long timescale MD simulations do not 

necessarily lead to accurate prediction (44, 45). For our study, we used single trajectory protocol; 

we think these 20 ns simulations are sufficient to qualitatively answer the question we asked here. 

More reliable free energy calculation approaches, like umbrella sampling and thermodynamic 

integration calculations are presented in chapter four. 

We first examined the reliability of these calculated binding free energy values. A 

common way to judge the calculated binding free energy is to compare with the experimental 

binding free energy in terms of comparing the correlation. Because the closed state is likely to be 

the EI* state (as mentioned in chapter two), we speculated the experimental binding free energy 

values would have better correlation with those calculated from the closed state than those from 

the open state.  

As expected, the free energies calculated from the closed conformation had a good 

correlation with experimental results. Table 3.2 lists the van der Waals, electrostatics, solvation 

energy, entropy, and overall free energy calculated from the MM/PBSA approach. By plotting 

the experimental binding free energy versus the overall calculated binding free energies, we 

found the correlation coefficient (R
2
) are promising (Figure 3.5). The values of correlation 

coefficient (R
2
) are 0.96 and 0.81 for rapid reversible and slow-onset inhibitors, respectively. 

When combining all ten inhibitors results, the overall R
2
 value is 0.96 (Figure 3.5C), suggesting 

the MM/PBSA approach reproduces a good trend of the binding affinity for the InhA system. 

One thing to note is that the slope deviates from one. Other studies had showed the 

effects of entropy calculation could drive the slope away from one (44, 146, 147). In addition, 
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the fixed partial charge model also can cause the slope deviating from one (148). The polarizable 

force fields may reduce the imperfection of fixed charge models (67-69).  

 

 

Figure 3.5. The correlation between the experimental binding free energies and the 

MM/PBSA binding free energies calculated from the closed InhA. (A) Rapid reversible 

inhibitors. (B) Slow-onset inhibitors. (C) All inhibitors. Detailed data are listed in table 3.2. 

 

For those free energies calculated from the open conformation, only rapid reversible 

inhibitors had a good correlation with experimental results. The correlation coefficients for rapid 

reversible and slow-onset inhibitors are 0.89 and 0.54, respectively (Figure 3.6). For the rapid 

reversible inhibitors, the calculated binding free energies from the closed and open states both 

have good correlations with experiment results (R
2 

= 0.96 and 0.89, respectively). However, for 

the slow-onset inhibitors, the correlation coefficient drops from 0.81 (closed state) to 0.54 (open 

state). These results match to our expectation that the open conformation is unlikely to be the 

final EI* complex for the slow-onset inhibitors, so that the binding free energies calculated from 

the open state have a weak correlation with the experimental values.  
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Figure 3.6. The correlation between the experimental binding free energies and the 

MM/PBSA binding free energy calculated from the open InhA. (A) Rapid reversible 

inhibitors. (B) Slow-onset inhibitors.  Detailed values are shown in table 3.3. 
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Table 3.2. MM/PBSA binding free energies calculated from the closed conformation. 

 ΔGexplt ΔEvdw 

A 

ΔEcol 

B 

ΔGsol 

C 

ΔGentropy 

D 

ΔEvdw + ΔEcol + ΔGsol  + ΔGentropy 

A+B+C+D 

Triclosan -9.14 ± 0.05 -39.81 ± 0.27 -9.44 ± 0.84 22.32 ± 0.49 15.75 ± 0.53 -11.19 ± 0.72 

PT3 -10.88 ± 0.19 -44.95 ± 0.20 -14.02 ± 0.51 27.57 ± 0.29 18.55 ± 1.02 -12.85 ± 0.69 

PT4 -11.02 ± 0.03 -46.89 ± 0.66 -12.48 ± 1.11 26.34 ± 0.93 20.00 ± 1.00 -13.03 ± 0.94 

PT5 -12.30 ± 0.10 -51.46 ± 0.47 -12.76 ± 0.62 26.80 ± 0.59 20.61 ± 0.36 -16.81 ± 1.02 

PT52 -7.28 -34.77 ± 0.31 -9.79 ± 0.87 21.64 ± 1.10 16.66 ± 0.43 -6.26 ± 0.56 

      R2=0.96 

PT70 -14.21 ± 0.06 -50.90 ± 0.30 -13.97 ± 0.73 27.79 ± 0.88 19.45 ± 0.59 -19.69 ± 1.75 

PT82 -14.88 ± 0.08 -54.98 ± 0.46 -16.54 ± 2.65 29.17 ± 1.13 19.15 ± 0.37 -23.20 ± 1.18 

PT91 -12.38 ± 0.08 -50.41 ± 0.53 -9.73 ± 0.91 25.28 ± 0.48 19.47 ± 1.06 -15.39 ± 1.33 

PT92 -13.31 ± 0.13 -51.42 ± 0.24 -11.64 ± 0.32 25.32 ± 0.21 18.99 ± 0.49 -18.74 ± 0.51 

PT119 -11.90 ± 0.09 -49.00 ± 0.72 -14.76 ± 2.77 29.95 ± 1.80 16.53 ± 0.51 -17.28 ± 1.43 

      R2=0.81 

Experimental Ki values are taken from ref (13, 142). 

The energy value was the mean value from four monomers. Statistical error was the standard error of 

mean from four monomers. It was estimated by calculating the standard deviation of four monomers and 

divided by √ . Although we performed the simulation in the biological tetramer assembly, we assumed 

four monomers work independently and there is no cooperativity and allostery in this system. Therefore, 

we treated one tetramer run as a four individual runs. 
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Table 3.3. MM/PBSA binding free energies calculated from the open conformation. 

 ΔGexplt ΔEvdw 

A 

ΔEcol 

B 

ΔGsol 

C 

ΔGentropy 

D 

ΔEvdw + ΔEcol + ΔGsol  + ΔGentropy 

A+B+C+D 

Triclosan -9.14 ± 0.05 -36.92 ± 0.68 -9.58 ± 0.78 22.51 ± 1.34 17.54 ± 1.36 -6.45 ± 1.41 

PT3 -10.88 ± 0.19 -44.27 ± 0.34 -13.19 ± 1.04 28.10 ± 1.33 18.75 ± 0.95 -10.61 ± 1.08 

PT4 -11.02 ± 0.03 -46.76 ± 0.73 -13.86 ± 0.23 27.86 ± 0.26 18.23 ± 0.85 -14.53 ± 0.50 

PT5 -12.30 ± 0.10 -48.94 ± 1.56 -12.13 ± 1.60 25.76 ± 1.48 18.55 ± 1.19 -16.76 ± 1.50  

PT52 -7.28 -30.99 ± 1.53 -6.26 ± 1.75 16.95 ± 2.57 15.59 ± 0.76 -4.71 ± 1.18 

      R2=0.89 

PT70 -14.21 ± 0.06 -47.12 ± 1.14 -11.75 ± 0.91 26.60 ± 1.57 20.93 ± 1.04 -11.34 ± 1.41 

PT82 -14.88 ± 0.08 -51.80 ± 1.45 -11.84 ± 1.18 25.53 ± 1.03 20.55 ± 0.55 -17.56 ± 2.30 

PT91 -12.38 ± 0.08 -47.26 ± 1.09 -8.79 ± 1.33 24.01 ± 1.25 20.45 ± 0.81 -11.60 ± 2.01 

PT92 -13.31 ± 0.13 -47.80 ± 1.32 -11.63 ± 2.40 26.03 ± 1.08 19.05 ± 1.14 -14.35 ± 2.40 

PT119 -11.90 ± 0.09 -44.67 ± 1.95 -16.22 ± 5.31 33.18 ± 3.71 17.22 ± 1.65 -10.49 ± 2.90 

      R2=0.54 

Experimental Ki values were taken from ref (13, 142). 

The energy value was the mean value from four monomers. Statistical error was the standard error of 

mean from four monomers. It was estimated by calculating the standard deviation of four monomers and 

divided by √ . Although we performed the simulation in the biological tetramer assembly, we assumed 

four monomers work independently and there is no cooperativity and allostery in this system. Therefore, 

we treated one tetramer run as a four individual runs. 
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3.3.4 Free energy difference between the closed and open states 

 

As mentioned in chapter two, because we speculated that the open and closed states are 

likely to be the EI and EI* states respectively, the slow-onset inhibitors shall have better binding 

energies in the closed state than in the open state. For the rapid reversible inhibitors, since the 

triclosan, PT3, and PT5 bound ternary crystal structures have missing electron density in the 

helix-6 region, these inhibitors would not show a strong preference for the closed or open active-

site conformation. It would be interesting to know whether the calculated binding free energies 

are consistent with the crystallographic observations. To know this, we compared the energy 

difference between the closed and open states. 

For the slow-onset inhibitors, as expected, the binding free energies of the closed state 

have lower (favorable) values than those from the open states. By subtracting the MM/PBSA of 

closed and open states, we found that the slow-onset inhibitors were 3 ~ 8 kcal/mol more 

favorable in the closed state (Table 3.4). On the contrary, the rapid reversible inhibitors only 

modestly favored the closed state by 0 ~ 2 kcal/mol (Table 3.4). The MD simulation results are 

consistent with the crystal structure observations showing that the slow-onset inhibitors prefer 

the closed conformation while the rapid reversible inhibitors do not have strong preference for 

the closed or the open conformation. Moreover, for the rapid reversible inhibitors, because the 

binding free energy values at the closed and open states are similar, it explains why the R
2
 values 

are good for the both closed and open states. As for the slow-onset inhibitors, because the crystal 

structures have a closed conformation, it is reasonable that the calculated binding free energies 

from the open state did not have a good correlation with the experimental binding free energies. 
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Table 3.4. Free energy differences between the closed and open conformation. 

 ΔΔEvdw 

A 

ΔΔEcol 

B 

ΔΔGsol 

C 

ΔΔGentropy 

D 

ΔΔEvdw + ΔΔEcol + ΔΔGsol  + ΔΔGentropy 

A+B+C+D 

Triclosan -2.89 ± 0.68 0.14 ± 0.78 -0.19 ± 1.34 1.79 ± 1.36 -4.73 ± 1.41 

PT3 -0.68 ± 0.34 -0.83 ± 1.04 -0.53 ± 1.33 0.20 ± 0.95 -2.23 ± 1.08 

PT4 -0.13 ± 0.73 1.38 ± 0.66 -1.52 ± 1.11 -1.77 ± 0.93 1.50 ± 0.94 

PT5 -2.52 ± 1.56 -0.63 ± 1.60 1.04 ± 1.48 -2.06 ± 1.19 -0.06 ± 1.50 

PT52 -3.78 ± 1.53 -3.53 ± 1.75 4.69 ± 2.57 -1.07 ± 1.10 -1.56 ± 1.18 

      

PT70 -3.78 ± 1.14 -2.22 ± 0.91 1.19 ± 1.57 1.48 ± 1.04 -8.34 ± 1.75 

PT82 -3.18 ± 1.45 -4.7 ± 1.18 3.64 ± 2.65 1.40 ± 1.13 -5.64 ± 2.30 

PT91 -3.15 ± 1.09 -0.94 ± 1.33 1.27 ± 1.25 0.98 ± 0.81 -3.80 ± 2.01 

PT92 -3.62 ± 1.32 -0.01 ± 2.40 -0.71 ± 1.08 0.06 ± 1.14 -4.39 ± 2.40 

PT119 -4.33 ± 1.95 1.46 ± 5.31 -3.23 ± 3.71 0.69 ± 1.80 -6.78 ± 2.90 

These values were the energy difference between tables 3.2 and 3.3.  

 

3.3.5 Comparisons of experimental binding free energy with the calculated VDW, 

electrostatic, entropy and solvation energies. 

 

 Previous study has shown that the VDW energy term controls the overall inhibitor 

binding in the E. coli FabI system (90). Because InhA is homolog of FabI, it would be interesting 

to know whether the VDW interaction is also important for the inhibitor binding in the InhA 

system as this information can assistant future lead optimization. In order to know what kind of 

energy terms control the inhibitor binding in the InhA enzyme, we compared the experimental 

binding free energies with the different MM/PBSA energy terms (VDW, electrostatic, entropy, 

and solvation). 
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 As shown in Figure 3.7, the VDW energy term had the strongest correlation (R
2 

= 0.94) 

with the experimental binding free energies, suggesting that the inhibitor’s shape is important for 

inhibitor binding in the InhA enzyme. This result is similar to the previous E. coli FabI study 

indicating the VDW energy term controls the overall inhibitor binding (90). Because we only 

simulated 10 inhibitors bound complexes; larger and more diverse inhibitor sets may be 

considered in order to further validate and test the conclusion we have here. 

 

 

Figure 3.7. The correlation between the experimental binding free energies and the 

MM/PBSA VDW, electrostatic, entropy and solvation energies. The experimental binding 

free energies have the strongest correlation with the MM/PBSA VDW energies. 
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3.3.6 Per-residue Energy decomposition 

 

Based on the observation from X-ray crystal structure, residues F149 ,Y158, A198, I202, 

M199, and V203 have been suggested to be the key residues for the inhibitor binding (13). 

Although we can estimate which residues are important in terms of measuring their distance 

between inhibitor, however, this approach is less quantitative. To get quantitative interaction 

energies, we calculated the non-bonded interactions between the inhibitor and each receptor 

residue.  

Figure 3.8A shows the non-bonded interaction energies (van der Waals + electrostatic) 

between inhibitor PT70 and receptor in the closed conformation. From this per-residue energy 

decomposition, residues G96, F149, Y158, M161, M199, and V203 are suggested to be key 

residues for receptor-ligand binding. Based on the energy decomposition results and the relative 

position of these key residues (Figure 3.8B), it seems like residues G96 backbone has a potential 

to form an H-bond with the inhibitor. For future inhibitor design, addition of some functional 

group at the meta or para position of the B-ring may create a H-bond with the residue G96. 

 

 



 

82 
 

 

Figure 3.8. Per-residue energy decomposition of PT70. Residue G96, F149, Y158, M161, 

M199, and V203 contribute most to the inhibitor binding. (A) Energy decomposition (B) The 

relative position of those residues from (A). 

 

3.3.7 What is missing from the free energy calculation in terms of explaining slow-onset 

inhibition? 

 

 From the MM/PBSA calculation, we found the slow-onset inhibitors prefer closed 

conformation while the rapid reversible inhibitors do not have strong preference for the closed or 

open conformation and these results are in consistent with the crystallographic observations. We 

demonstrated that the MM/PBSA approach reproduced a good trend of the binding affinity in the 

InhA system. However, these calculated free energies are from the ground states, and are 

insufficient to address the slow-onset inhibition mechanism. As we mentioned in chapter two, we 

speculated that the closed and open are highly possible to be the EI and EI* states, respectively, 

and the conformational change from the open to the closed state is the isomerization step. To test 

this model, we have to validate whether there are energy barriers between the closed and open 

states and an energy profile along the open-closed path will be required. We present the open-
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closed path energy calculations in a separately chapter (see chapter four). In that chapter, we 

applied pathway sampling approach and more reliable free energy calculation approaches, such 

as umbrella sampling and thermodynamic integration to better understand the transition state 

barrier. Although the MM/PBSA results cannot explain the conformational change step, the 

ability of MM/PBSA reproduces the binding affinity seems promising. For future InhA inhibitors 

design, the MM/PBSA approach can be used to predict the inhibitors’ binding affinity before 

synthesis of compound. 

   

3.4  Summary 
 

To know whether MD simulation can robustly reproduce the binding affinity in the InhA 

system as well as to get a better understanding of what kind of non-bonding interaction (van der 

Waals or electrostatics) controls the inhibitor binding, we performed MD simulations for 10 

inhibitors bound complexes (with both closed and open conformations) and used the MM/PBSA 

approach to calculate the binding free energy.  

The calculated binding free energies from the MM/PBSA approach had a good 

correlation (R
2
 = 0.96) with the experimental values, indicating MD simulation reproduces the 

trend of binding affinity in the InhA enzyme. Detailed comparisons between closed and open 

states free energies demonstrate that the slow-onset inhibitors had more favorable binding free 

energy at the closed state than the open state by 2 ~ 8 kcal/mol, while rapid reversible inhibitors 

did not have strong preference for the closed or open conformations. By comparing the different 

energy terms, we found that the inhibitor’s shape is crucial for binding in the InhA enzyme. Per-
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residue energy decomposition shows that residues F149, Y158, M161, M199 and V203 play 

important roles for the inhibitor binding.   
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Chapter Four  

A structural and energetic model for the slow-onset inhibition of the 

InhA 
 

4.1  Introduction 
 

Drug-target residence time has become an important parameter in lead optimization (14-

18). Traditionally, a strong binder is thought to have better efficacy than a weak binder does (19). 

However, many examples suggest that the in vivo efficacy does not always linearly correlate 

with binding affinity (20). Instead of binding affinity, binding kinetics has caught drug discovery 

community’s attention and an increasing number of groups have emphasized both structure-

kinetics relationship and structure-activity relationship (149, 150). Residence time, the reciprocal 

of the dissociation rate constant, represents the life-time of an enzyme-inhibitor complex (15). 

The observations of many current drugs have long residence times on their targets suggest that 

drug-target residence time is an important component of in vivo drug activity (18). Especially, 

the study of the InhA homologue in Francisella tularensis (ftuFabI) demonstrated that inhibitor’s 

residence time had better correlation with in vivo efficacy than the binding affinity did (21). 

There are few studies that used free energy landscape model to predict the inhibitor 

association/dissociation kinetics. A recently published paper used free energy landscape theory 

to predict the binding kinetics of Huperzine A, an drug of Alzheimer’s disease, and the predicted 

binding and activation energies deviated less than 1 kcal/mol to the experimental values (66). 

Another opportunity of using free energy profile to explain slow kinetics is found in the study of 

comparing charged and uncharged ligands in the QA site of photosynthetic bacterial reaction 

centers (151).  
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In principle, there are two possible ways to increase the inhibitor residence time. The 

inhibition of InhA with the INH-NAD adduct occurs through a two-step binding mechanism in 

which the initial rapid formation of a weakly bound enzyme-inhibitor complex (EI) is followed 

by a slow conversion step, leading to a higher affinity complex (EI*). The first approach to 

increase the residence time is to stabilize the final EI* complex and the second approach is to 

destabilize the transition state between EI and EI* states. For InhA lead optimization, PT70 is a 

tight binding inhibitor of InhA with a Ki value in pM level that would be very challenging to 

increase the residence time by solely considering the binding affinity of EI* state. Alternatively, 

increase of the free energy barrier in the isomerization step could be a more feasible approach. 

Thus, a detailed understanding of the interactions that modulate the barrier to this isomerization 

step would thus facilitate lead optimization and rational design in binding kinetics.  

In this chapter, the goal is to obtain the free energy landscape along the open-closed path 

and to understand the detailed conformational changes during the transition, further to obtain a 

model for the transition state that would provide insight into rational control of the energy barrier. 

Since these states are inherently difficult to characterize experimentally, we used a variant of the 

nudged elastic band (NEB) (92) simulation method, partial NEB (PNEB) (95) to generate a set of 

structural snapshots representing the conformational pathway between the crystallographic open 

and closed states. We used free energy calculations to evaluate the energy profile for loop 

closing, and to understand the impact on both the binding affinity and the energy barrier when 

the protein or ligand was modified. The free energy profiles demonstrated that rapid reversible 

inhibitor complex exhibited two types of potential of mean force (PMF), either with preference 

for the open state, or with little preference and low energy barrier between the open and closed 

states. On the other hand, slow-onset inhibition complexes had a relative stable closed state with 
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a more significant energy barrier between the open and closed states. These energy profiles 

explain why rapid reversible inhibitors bound complex can have ordered open (like PT155 

bound InhA) or disordered (like triclosan, PT3 and PT5 bound InhA) helix-6, while slow-onset 

inhibitors bound complex (like PT70 bound InhA) have only ordered closed helix-6 from the x-

ray crystallography structures.   

Structural analyses of the transition path revealed specific active-site residues that create 

steric hindrance at the transition state. We hypothesized that these steric clashes control the slow-

onset inhibition of the InhA enzyme, and changes of side chain or inhibitor size in this region 

could modulate slow-onset inhibition. Further loss and regain of energy barrier studies 

demonstrate that the free energy barrier at the transition state can be controlled by mutations and 

designed inhibitors. MD simulation showed that removal of the steric clashes by replacement of 

amino acids with those possessing smaller side chains resulted in reduction of the energy barrier. 

Furthermore, the energy barrier was regained in the mutants when using either of the two 

following approaches. The steric clash lost when a side chain is mutated to a smaller group can 

be regained in a double mutant with a nearby, compensating change to a larger side chain. 

Likewise, energy barrier lost in the single mutant can be regained when using inhibitors designed 

with bulky groups intended to restore the steric clash. These loss and regain of function studies 

validate our mechanistic hypothesis for the key interactions controlling active-site open-closed 

conformational change. Moreover, we identified the potential for the same mechanistic approach 

in FabI enzymes from other important pathogens.  
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4.2  Method 

4.2.1 Molecular dynamics simulation setup 

 

 For the InhA system, the initial pose of inhibitor PT70 was taken from the first monomer 

of the InhA:NAD
+
:PT70 ternary complex (PDB ID: 2X23 (13)) while the initial poses of PT162 

and PT163 (Figure 4.1) were generated by the DOCK 6.3 suite of docking software (140). The 

procedure for preparing the binding-site for docking has been described previously (141). 

Flexible ligand docking and default parameters were used. We assumed that the diphenyl ether 

of PT162 and PT163 occupy similar position as PT70 does, thus the docking poses with lowest 

RMSD value in the diphenyl ether moiety was chosen as the initial structures. For the saFabI 

system, the initial structure of PT4 was taken from the first monomer of the saFabI:NAD
+
:PT4 

ternary complex (PDB ID: 4BNH (152)) while the initial structures of PT1 and PT166 (Figure 

4.1) were generated by the DOCK 6.3 suite of docking software with same flexible docking 

protocol (140).  

For the InhA system, the initial closed and open structures were taken from the first 

monomers of the InhA:NAD
+
:PT70 ternary complex (PDB ID: 2X23 (13)) and the 

InhA:NAD
+
:C16-NAC complex (PDB ID: 1BVR (11)), respectively. For the saFabI system, the 

initial closed structures were taken from the first monomers of the saFabI:NAD
+
:PT4 ternary 

complex (PDB ID: 4BNH (152)). AMBER ff99SB (26) and GAFF (115) force field were 

assigned to the protein and inhibitor, respectively. The force field parameters of the cofactor 

NAD
+
 and NADP

+
 were obtained from previous studies (118, 119). The partial atomic charges 

of inhibitors were computed using Gaussian98 (153) with the HF/6-31G* basis set, followed by 

RESP fitting (46, 116). The mutants were generated using Swiss-Pdb viewer (154). Each 
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complex was solvated in a truncated octahedral TIP3P (120) water box with a minimum distance 

of 8 Å between the water box edge and solute, resulting in ~ 23,000 atoms in total. SHAKE (155) 

was used to constrain bond lengths involving hydrogen. The particle mesh Ewald method (156) 

was used for calculating electrostatic energy with an 8Å nonbonded cutoff. Each system was 

equilibrated initially by high restraints on non-water atoms, and gradually reduced and removed 

the positional restraints on the backbone atoms using the following procedures. The first step 

was 10,000 steps of steepest descent minimization with 100 kcal mol
-1

 Å
-2

 restraints on all atoms 

except water molecular and hydrogen atoms. The second step was heating the system from 100 

to 300 K at constant volume over 100 ps with 100 kcal mol
-1

 Å
-2

 restraints on non-water and 

non-hydrogen atoms, followed by 100 ps with the same restraints at constant 300 K temperature 

and 1 atm pressure. The third step was 250 ps MD with restraint weight of 10 kcal mol
-1

 Å
-2

 on 

the non-water and non-hydrogen atoms at constant 300 K temperature and 1 atm pressure. The 

following steps only restrained the backbone atoms and gradually reduced the restraints weight 

from 10 to 0.1 kcal mol
-1

 Å
-2

 at constant 300 K and 1 atm. This was carried out by 100 ps with 

10 kcal mol
-1

 Å
-2

 restraint, followed by 100 ps with 1 kcal mol
-1

 Å
-2

 restraint, and 100 ps with 0.1 

kcal mol
-1

 Å
-2

 restraint. 
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Figure 4.1. Inhibitors studied in this chapter. 

 

4.2.2 Open conformation of saFabI 

 

 The open conformation of saFabI was generated from steered MD simulation. This was 

done by gradually increasing the distance between center of mass (COM) of residue 194 to 198 

backbone atoms and COM of residue 92 to 96 and 111 to 120 backbone atoms to 20 Å with a 10 

kcal/mol Å
-2 

restraint over 500 ps MD simulation. 
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4.2.3 PNEB simulation 

 

The partial nudged elastic band (PNEB) (95) simulation approach was used in this study 

to generate structure models along the low-energy pathway between the open and closed 

conformations. The equilibrated open and closed structures were used as the two end-point 

structures and 30 windows (including end-points) were used in the simulation. The NVT 

ensemble was used with PNEB. A spring force was applied to the backbone atoms of α-helices 6 

and 7 (for InhA: residues 196 to 223; for saFabI residues 189 to 215) in the subsequent steps. In 

the first 40 ps, the system was equilibrated at 300 K with a Langevin collision frequency of 50 

ps
-1

 and spring force of 20 kcal mol
-1

 Å
-2

. The next step was 100 ps equilibration at 300 K with a 

20 ps
-1

 Langevin collision frequency and a spring force of 75 kcal mol
-1

 Å
-2

. After the 

conformations were generated along the open-to-closed path, simulated annealing approach was 

used to optimize the local energy minimized path. This was done by heating the system from 300 

to 375 K gradually over 175 ps, and subsequently cooling back to 300 K gradually over 175 ps 

with a 20 ps
-1

 Langevin collision frequency and a spring force of 75 kcal mol
-1

 Å
-2

. A 20 kcal 

mol
-1

 Å
-2

 Cartesian restraint was applied to the backbone atoms from residues 2 to 195 and 225 

to 268 (for saFabI: residues 1 to 188 and 216 to 254) to maintain structure stability during the 

heating process. After this simulated annealing, a 600 ps production run was performed with the 

same Langevin collision frequency and spring force at 300 K. In order to maintain structure 

stability at the tetramer interface, a 10 kcal mol
-1

 Å
-2

 Cartesian restraint was applied to the 

backbone atoms from residues 2 to 195, and 225 to 268 (for saFabI: residues 1 to 188 and 216 to 

254) during the production run. 
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4.2.4 Umbrella sampling 

 

Energy landscapes were obtained by umbrella sampling (US). Two reaction coordinates 

(step and shear torsions) were used to describe the motion of α-helices 6 and 7 (Figure 4.2). US 

windows were spaced at 3º increments in both step and shear torsions. An extra 6º buffer region 

was added around the grid region sampled in the PNEB simulation, resulting in a total of ~192 

grid points. Initial structures at each grid point were selected from the PNEB production 

trajectories with dihedral values (step/shear torsions) closest to the respective grid point. 500 ps 

MD simulation in the NVT ensemble at 300 K with a Langevin collision frequency of 75.0 ps
-1

 

was performed for each grid point. The Weighted Histogram Analysis Method (WHAM) (98) 

approach and analysis program (96) was then used to obtain the potential of mean force (PMF) 

from the umbrella sampling results. Convergence of the free energy calculations was tested by 

extending the umbrella sampling of InhA:NAD
+
, InhA:NAD

+
:PT155, and InhA:NAD

+
:PT70 

complex for another 500 ps. There was no significant change in the free energy from 1
st
 500 ps, 

2
nd

 500 ps, and 1 ns runs. We assumed other complexes also have similar results, thus 500 ps 

umbrella sampling were run for other complexes (Figure 4.3). 
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Figure 4.2. Step and shear torsion angles. In the step torsion, point 1 and 4 are the center 

of mass (COM) of backbone atoms from residue 200 to 205 and residue 211 to 216, 

respectively. Point 2 is the COM of backbone atoms from residue 19 to 21 and 196. Point 3 

is the COM of backbone atoms from residue 219 to 222. In the shear torsion, points 1 and 4 

are the beta-carbon of residue 203 and 215, respectively. Points 2 and 3 are the COM of 

backbone atoms from residue 98 and 158, respectively. For the saFabI system, similar 

groups of atoms were used. In the step torsion, point 1 and 4 are the COM of backbone 

atoms from residue 195 to 196 and residue 202 to 206, respectively. Point 2 is the COM of 

backbone atoms from residue 16 to 18 and 193. Point 3 is the COM of backbone atoms 

from residue 216 to 219. In the shear torsion, points 1 and 4 are the beta-carbon of residue 

195 and 202, respectively. Points 2 and 3 are the COM of backbone atoms from residue 93 

to 95 and 157 to 161, respectively. 
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Figure 4.3. Convergence test of PMF. There is no significant change in the free energy from 1
st
 

500 ps, 2
nd 

500 ps and 1 ns runs. 

 

4.2.5 Thermodynamic integration calculation 

 

Thermodynamic integration (TI) calculation was used to calculate the relative binding 

free energy (∆∆G) between two states. Blow is the scheme showing the thermodynamic cycle of 

wild-type and mutant enzymes with a same inhibitor and their associated free energies. 

 

where ∆∆G = ∆G2 - ∆G1 = ∆G4 - ∆G3 
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∆G3 and ∆G4 represent the binding free energies of an inhibitor to the wild-type and mutant InhA, 

while ∆G1 and ∆G2 represent the energies of alchemical transformation in the enzyme along and 

complex environment. The TI method calculates the alchemical transformation based on the 

following equation: 

   ∫ 〈
     

  
〉   

 

 

 

where λ represents the coupling parameter describing state between initial and final states, and 

V(λ) is the λ-coupled potential function. The ∂V/∂λ value can be obtained from the Sander output 

files. To get a smooth transformation from the initial state to the final state, three steps approach 

were used in this study (53). First step was removing the partial charges on the target atoms. 

Second step was soft-core vdW transformation. Third step was adding partial charges to the 

target atoms. The free energy changes associated with each of the steps can be estimated from 

numerically integrating the ∂V/∂λ values from multiple simulations at a fixed λ value based on 

the following equation. 

   ∑  〈
  

  
〉  

 

   

 

Based on the AMBER tutorial, 19 λ points (0.05 to 0.95 with interval 0.05) were used in this 

study (157). The 0.05 weight value (Wi) was used for each λ point. For the endpoint (λ=0 and 1), 

trapezoid rule was used to linearly extrapolate the ∂V value from the closest two values and their 

associated weights were 0.025. 

 Each system was equilibrated initially with 5,000 steps of steepest descent minimization 

with 100 kcal mol
-1

 Å
-2

 restraints on all atoms except water molecular and hydrogen atoms, 

followed by heating the system from 100 to 300 K at constant volume over 100 ps, and 100 ps 
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MD at constant 300 K and 1 atm with same restraints. Next step was 250 ps MD with same 

temperature and pressure but changed the restraints to 10 kcal mol
-1

 Å
-2

. Finally, the restraints 

were only applied on backbone atoms and decreased gradually. This was carried out by 100 ps 

with 10 kcal mol
-1 

Å
-2

 restraints, followed by 100 ps with 1 kcal mol
-1

 Å
-2

 restraints, and 100 ps 

with 0.1 kcal mol
-1

 Å
-2

 restraints. 1 ns production run was performed in NPT ensemble using 

Langevin thermostat with a collision frequency of 2.0 ps
-1

. The ∂V/∂λ statistics values collected 

from the production run were used to numerically estimate the ΔΔG.  

 

4.3  Results and Discussion 
 

 In this chapter, we aimed to obtain the free energy landscape along the open-closed path 

and to understand the detailed conformational changes during the conformational isomerization, 

further to obtain the transition state structure that would provide insight into rational control of 

the induced-fit conformational change. Because these transition state structures are inherently 

difficult to characterize experimentally, we used a variant of the nudged elastic band (NEB) (92) 

simulation method, partial NEB (PNEB) (95) to generate a set of continued structures 

representing the conformational pathway between the crystallographic open and closed states. 

We used free energy calculation (umbrella sampling) to evaluate the energy landscape along the 

open-closed path, and to understand the impact on both the binding affinity and the energy 

barrier when the protein or ligand was modified. 
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4.3.1 The continued structures along the open-closed path  

 

Because we need the energy profile along the open-closed path to evaluate the transition 

state barrier, first we have to get continued structures between the crystallographic open and 

closed conformations, followed by the free energy calculations. To obtain continuous structures 

along the open-closed path, partial nudged elastic band (PNEB) simulation approach was used. 

During the transition from open to closed, helix 6 moved up and helix 7 moved down 

simultaneously, but helix-6 had a larger motion than helix-7 (Figure 4.4). In order to quantify 

the different conformations along this transitional path, two reaction coordinates (torsion angles) 

were defined (Figure 4.2). The first reaction coordinate was step torsion, which characterized the 

up-down motion of helix-6 and helix-7. From structural analyses, some potential steric 

interactions were observed between side chain residues from helix-6 and helix-7. Hence, the 

second reaction coordinate, shear torsion, was introduced to describe the motion between side 

chain atoms of V203 and I215. Based on these two reaction coordinates, the closed (PDB ID: 

2X23) and open (PDB ID: 1BVR and 2AQ8) crystal structures are clustered into specific ranges, 

suggesting these reaction coordinates are good descriptors for quantifying the open-closed 

motion. The open conformation locates in the region has step torsion 15 ~ 20 degrees, and shear 

torsion -4 ~ 5 degrees; whereas the closed conformation has step torsion in -19 degrees and shear 

torsion in 3 degrees. (Figure 4.5). 
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Figure 4.5. Mapping the closed and open crystal structures into the reaction coordinates of 

step and shear torsion angles. Based on measurements of step and shear torsions, the closed 

(PDB ID: 2X23) and open (PDB ID: 1BVR and 2AQ8) crystal structures are clustered into 

specific ranges, suggesting these reaction coordinates are good descriptors for quantifying the 

open-closed motion. 

 

Figure 4.4. The continued structure between open and closed InhA. The blue color 

represents closed state while red color represents open state.  



 

99 
 

4.3.2 Free energy profile of InhA:NAD
+
 binary complex  

 

 To better understand why certain inhibitor bound complexes have open, closed, and 

disordered helix 6, we use umbrella sampling based on the resulted PNEB structures to obtain a 

2D free energy profile along the open-closed path. We first calculated the binary complex 

(without inhibitor) and repeated the calculations for the inhibitor bound complexes. Based on the 

crystal structure observation of the binary complex (InhA:NAD
+
), InhA has an open active-site 

conformation (132). We speculated that the energy profile would have a very stable energy value 

at the open state.  

 As expected, the energy profile of InhA:NAD
+
 complex derived from the umbrella 

sampling had a good agreement with the crystal structure observation, showing that the global 

minimum is in the open conformation (Figure 4.6). In this PMF, two local energy minima are 

located in the open and closed positions, and an energy barrier is in between the open and closed 

states. The global minimum, which locates in the open state, is ~3 kcal/mol more favorable over 

the closed state. In addition, a ~6 kcal/mol energy barrier prevents the helix-6 moving from the 

open state to closed state.  
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4.3.3 Free energy profiles of rapid reversible inhibition complexes  

 

 To better understand why certain inhibitor bound complexes have open, closed, and 

disordered helix 6, we performed free energy calculation along the open-closed path for different 

inhibitor bound complexes. In chapter three we showed the binding free energy calculations at 

the closed and open conformation only provide the ground state information and are insufficient 

to explain the slow-onset inhibition mechanism which involved a structural isomerization step. 

Although triclosan, PT3 and PT155 all are rapid reversible inhibitors of InhA, triclosan and 

PT3 bound InhAs have a disordered helix-6 but PT155 bound InhA has an ordered and open 

helix-6 conformation based on the crystal structure observations. The PT155 bound InhA crystal 

structure is exception to the hypothesis of “slow-onset inhibition is coupled to ordering of active-

site” in previous study (13). It is very interesting to know why InhA with PT155 has an ordered 

active-site. One of the explanations is the crystal packing causes an ordered active-site loop. 

 

Figure 4.6. PMF of InhA:NAD+ binary complex. The global minimum is in the open 

state, in agreement with crystal structure observation (PDB ID: 1BVR). An energy barrier 

is between open and closed states.  
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However, after examining the crystal structure, crystal packing does not seem to be the reason. It 

would be interesting to know what kind of mechanism resulted in an ordered/disordered active-

site loop. In chapter 2, we showed the hypothesis of active-site open-to-closed conformation 

change might correlate with the slow-onset inhibition. If this model is correct, we expect a rapid 

reversible complex could exhibit two kinds of energy profiles. The first one is a flat energy 

landscape, with no energy barrier and no strong preference of open and closed states. The other 

one is that the complex favors open state (Figure 4.7). From the enzyme kinetics view, both of 

these scenarios would exhibit one step binding kinetics. We hypothesized that triclosan and PT3 

bound InhA would have a flat energy barrier since the crystal structures have a disordered active-

site, while PT155 bound InhA would have a similar energy profile as the InhA:NAD
+
 complex, 

exhibiting a global minimum in the open state and an energy barrier between the open and close 

states. To test this hypothesis, we ran the PNEB/US simulations for the triclosan, PT3 and 

PT155 bound complexes. 
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Figure 4.7. The possible energy profiles for disordered open, and closed active-site loop. For 

the rapid reversible inhibition complexes, if the crystal structure has a disordered active-site 

loop, the EI to EI* state would have similar free energy values. In addition, if the crystal 

structure has an open active-site loop, the EI state would be the global minimum. For a slow-

onset inhibition complex, the global minimum would always in the EI* state and an energy 

barrier in between the two states. 

 

As expected, InhA with rapid reversible inhibitor favors open state or has low energy 

barrier between open and closed states. Similar to the InhA:NAD
+
 binary complex, the PT155 

bound ternary complex (denoted as InhA:NAD
+
:PT155) favors open conformation (Figure 

4.8A).  The free energy barriers of open-to-closed and closed-to-open were 3.40 ± 0.09 and 2.15 

± 0.27 kcal/mol, respectively. We further measured the step torsion and shear torsion of the 

PT155 bound crystal structure (PDB ID: 4OXK) and found that the crystal structure is nearly in 

the global minimum region of the PMF (step and shear torsion are 9.2 and 1.5 degrees, 

respectively). The free energy landscape rationalizes the PT155 bound crystal structure, 

demonstrating even a rapid reversible can also have an ordered helix-6. 

 Unlike the PT155 bound complex, the InhA:NAD
+
:PT3 complex had equal free energy 

in the open and closed states (Figure 4.8B). The free energy barriers were 1.97 ± 0.16 and 2.57  

± 0.03 kcal/mol in the open-to-closed and closed-to-open directions, respectively. Because of the 

flat energy landscape, the active-site helices are expected to move randomly between the open 
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and closed conformation, resulting an indistinct electron density in the helix-6 region. Again, the 

PMF not only consistent with the crystal structure observation but also tell why the electron 

density of helix-6 is blurred in the PT3 bound crystal structure (PDB ID: 2B36). Similar result 

was also found in InhA:NAD
+
:triclosan complex, showing a flat free energy profile and explains 

why the crystal structure has a disordered helix-6 (Figure 4.8C). 

 

 

4.3.4 Free energy profiles of slow-onset inhibition complexes 

 

The energy profiles of rapid reversible inhibitors bound complexes explained the rapid 

reversible can have an open or disordered helix-6 conformation. These results match to our 

expectation when treating the open and closed active-site as the EI and EI* states (Figure 4.7). If 

our model is correct, we speculated the slow-onset inhibition complexes will also match to our 

expectation in Figure 4.7; the closed state is the global minimum in the energy profile and an 

energy barrier between the open and closed states. PT70 and PT92 are slow-onset inhibitors of 

InhA that have two-step inhibition kinetic property (13, 142), we simulated these two inhibitors 

 

Figure 4.8. PMF of rapid reversible complexes. (A) InhA:NAD
+
:PT155 (B) 

InhA:NAD
+
:PT3 and (C) InhA:NAD

+
:triclosan. PT155 bound InhA favors open 

conformation, while PT3 and triclosan bound InhA have flat energy barrier. 
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bound complexes and expected that the PMFs will exhibit a very stable closed state and an 

energy barrier in between the closed and open states. 

The free energy profiles, as expected, when InhA bound with these two inhibitors, the 

closed state had a lower free energy then the open state and an energy barrier in between them 

(Figures 4.9). For the PT70 bound complex, the free energy barrier from open to closed was 

3.26 ± 0.55 kcal/mol, whereas that of closed to open was 6.70 ± 0.41 kcal/mol. For the PT92 

bound complex, the free energy barrier from open to closed and closed to open were 1.63 ± 0.61 

and 6.81 ± 0.80 kcal/mol, respectively. These PMF profiles support the two step slow-onset 

inhibition and induced-fit models which the enzyme inhibitor initially form an EI complex 

(open), followed by an isomerization step, leading to a tightly binding EI* complex (closed). 

Moreover, the much deeper well in the closed conformation gives helix-6 a much better chance 

to stay structurally ordered in the crystal structure, which is consistent with the crystal structure 

observation that active-site helices are ordered in the PT70 and PT92 bound structures. 
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4.3.5 Key interactions during the open-closed conformational change 

 

In the above energy profiles, the rapid reversible complexes exhibit two types of PMF, 

either preferring the open state, or having little preference and low energy barrier between the 

open and closed states. On the other hand, slow-onset inhibition complexes have a relatively 

stable closed state with a more significant energy barrier between the open and closed states. The 

InhA
WT

:NAD
+
:PT70 complex shows an energy barrier at the transition state from 5 to 10 

degrees of step torsion, and -10 to -15 degrees of shear torsion (Figure 4.9A). Although 

comparison of the PMFs can suggest whether a particular enzyme-inhibitor complex may exhibit 

slow-onset inhibition, the PMF itself provides little information regarding which residues and/or 

what kinds of interactions contribute to the energy barrier. Importantly, the value of the MD 

simulations is that they allow us to extract structures near the PMF transition state and gain 

 

Figure 4.9. PMF of slow-onset inhibition complexes. (A) InhA:NAD
+
:PT70 and (B) 

InhA:NAD
+
:PT92. 
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insights into the atomic-level interactions that give rise to the slow-onset behavior. This 

transition state model can then be used to propose subsequent rational control of binding kinetics. 

Structural analysis of the transition state structure from the PT70 bound PNEB results 

revealed that the side chains of active-site residues M199, V203, A211, and I215 encounter a 

steric clash near the transition state (Figure 4.10). We speculated that a slow-onset inhibitor, 

such as PT70, crowds the helices 6 and 7 regions, particularly constrains residues M199, V203A, 

A211, and I215 during active-site loop closing step. To measure the progress of this 

reorganization, we used the relative position of residues V203 and I215 to distinguish between 

open and closed states. By placing and viewing the protein structure as shown in Figure 4.10, 

residue V203 is below residue I215 in the open state, and vice versa in the closed state. This 

motion, during which residue I215 passes residues near M199 and V203, and residue V203 

passes residues A211 and I215, is similar to opening a purse clasp that requires extra force to 

move past the steric clash. Conversely, a smaller inhibitor, such as triclosan and PT3, cannot 

constrain these residues during the loop closing step; therefore, these sidechains bypass the 

energy unfavorable steric clash. 
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Figure 4.10. Key residues involved in the transition between open and closed states. 

Residues M199, V203, and I215 form a “coin purse clasp” conformation and encounter an 

energetically unfavorable conformation at the transition state. 

 

To further examine the steric clashes among these residues, we measured inter-residue 

backbone distances during the transition. We observed that residues V203 and I215 follow a 

non-linear path during loop opening, initially becoming close, but then needing to move to 

longer distances before they become close again (Figure 4.11). This suggests that the side chains 

approach to form vdW contact, but the direct path to closed has a steric clash, and as a result the 

low-energy path takes a detour by separating the loop region prior to complete opening. We 

speculated that these steric clashes between resides V203 and I215 control the conformational 

changes between open and closed states for the slow-onset inhibition complex InhA:NAD
+
:PT70. 
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4.3.6 Removal of steric hindrance results in loss of transition state barrier 

 

To confirm our hypothesis that steric clash between residues V203 and I215 controls 

conformational changes, we performed in silico mutagenesis studies. If our hypothesis about the 

steric clashes between residues M199, V203, and I215 is true, then decreasing the steric clashes 

by replacing residues V203 and I215 with a smaller side chain, such as alanine, would decrease 

the energy barrier at the transition state.  

We repeated our wild-type simulation protocol for I215A (denoted as 

InhA
I215A

:NAD
+
:PT70) and V203A (denoted as InhA

V203A
:NAD

+
:PT70) mutants bound to PT70. 

In Figure 4.12, we show the backbone distance between residues at position 203 and 215 for 

these mutants. In both cases, a marked difference is seen as compared to the wild type (Figure 

 

Figure 4.11. Backbone distance betweenV203 and I215. These helices come closer during 

loop opening, but a steric clash in the transition state causes the path to deviate from linear 

behavior near the midpoint. 
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4.11); when either of the side chains is replaced by alanine, the “hump” in the profile associated 

with the steric clash disappears.  

 

     

Figure 4.12. Backbone distance between residues 203 and 215. (A) InhA
I215A

:NAD
+
:PT70 

complex (B) InhA
V203A

:NAD
+
:PT70 complex. Unlike the wild type, there is no “hump” in the 

transition state. 

 

If this model is correct, we expect to see a reduction in the free energy barrier as a result 

of this loss of the steric conflict in the transition state for I215A and V203A mutants. As shown 

in Figure 4.13A, the energy landscape of the InhA
I215A

:NAD
+
:PT70 complex is indeed 

qualitatively flatter compared to the InhA
WT

:NAD
+
:PT70 complex (Figure 4.9A); only a 0.34 ± 

0.20 kcal/mol and 2.73 ± 0.22 kcal/mol energy barrier remains for open to closed and closed to 

open directions, respectively (Table 4.1). Although the energy barrier becomes much smaller, 

the complex still prefers the closed state. For the V203A mutant, the energy barrier from open to 

closed decreased to 1.31 ± 0.95 kcal/mol and the overall energy landscape is flatter compared to 
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the InhA
WT

:NAD
+
:PT70 complex (Figures 4.13B and 4.9A). The energy barrier from closed to 

open drops from 6.70 ± 0.41 kcal/mol to 2.52 ± 0.48 kcal/mol (Table 4.1). 

 

        

Figure 4.13. PMFs of (A) InhA
I215A

:NAD
+
:PT70 and (B) InhA

V203A
:NAD

+
:PT70. Both 

mutants have significantly flatter free energy landscapes than obtained for InhA
WT

:NAD
+
:PT70.  

 

Table 4.1: Summary of energy barriers. 

Complex 
Energy barrier

a
 (kcal mol

-1
) 

open to closed closed to open 

InhA
WT

:NAD
+
 6.29 ± 0.22 3.32 ± 0.51 

InhA
WT

:NAD
+
:PT155 3.06 ± 0. 02 1.29 ± 0.09 

InhA
WT

:NAD
+
:PT3 1.97 ± 0.16 2.57 ± 0.03 

InhA
WT

:NAD
+
:Triclosan 1.04 ± 0.45 1.77 ± 0.51 

InhA
WT

:NAD
+
:PT70 3.26 ± 0.55 6.70 ± 0.41 

InhA
WT

:NAD
+
:PT92 1.63 ± 0.61 6.81 ± 0.80 

InhA
V203A

:NAD
+
:PT70 1.31 ± 0.95 2.52 ± 0.48 

InhA
I215A

:NAD
+
:PT70 0.34 ± 0.20 2.73 ± 0.22 

InhA
V203F/I215A

:NAD
+
:PT70 0.29 ± 0.24 7.16 ± 0.24 
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InhA
V203L/I215A

:NAD
+
:PT70 5.11 ± 0.09 3.31 ± 0.25 

InhA
V203A/I215F

:NAD
+
:PT70 1.43 ± 0.51 6.32 ± 0.09 

InhA
V203A/I215M

:NAD
+
:PT70 0.69 ± 0.48 4.26 ± 0.19 

InhA
V203A/I215Q

:NAD
+
:PT70 2.30 ± 0.25 4.80 ± 0.36 

InhA
V203A

:NAD
+
:PT162 1.41 ± 0.77 2.73 ± 0.17 

InhA
I215A

:NAD
+
:PT163 2.24 ± 0.50 6.20 ± 0.03 

a
These energy values were taken from the PMFs by subtracting the transition state and the ground state 

energies. Statistical error was the difference between two independent runs. 

 

The PMFs give the relative free energy during loop closing. However, changes to the 

apparent energy barrier could arise either from decreasing the transition state energy, or 

increasing the ground state energy. Additional calculations are required to determine which of 

these are responsible for the changes observed in the figures shown. In order to calibrate the two 

PMFs to the same energy scale and allow direct comparison, we performed thermodynamic 

integration (TI) to calculate relative binding free energy (ΔΔG) between wild-type and mutation 

InhA, both in the closed state. This allows us to calculate the offset in the loop closing PMFs that 

were obtained from umbrella sampling. Because the accuracy of TI simulation is sensitive to the 

length of simulation, we initially performed 500 ps simulation then extended to 1 ns to check the 

convergence. Convergence of the TI calculations was tested by comparing the 100 ps to 1 ns 

results. There was no significant change in the free energy after 600 ps (Figure 4.14). 
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Figure 4.14. Convergence of thermodynamics integration calculation. (A) 

InhA
WT→V203A

:NAD
+
:PT70 (B) InhA

WT→I215A
:NAD

+
:PT70. Error bar is the difference between 

two independent runs. There is no significant change in the free energy after 600 ps. 

 

The TI results show that the relative binding free energies of ΔΔGWT→I215A and 

ΔΔGWT→V203A increase 0.32 ± 0.07 and 0.52 ± 0.12 kcal/mol, respectively, indicating these 

mutations modestly destabilize the binding affinity of PT70 in the closed state (Table 4.2). 

Because the I215 sidechain atoms only interact with the end of the PT70 alkyl tail, the small 

change of binding free energy is reasonable for the I215A mutant. The V203 sidechain atoms 

interact with the diphenyl ether moiety of inhibitor, and mutation has a somewhat larger effect, 

weakening binding of PT70 by 0.52 kcal/mol.  

 

Table 4.2. Thermodynamic integration results. 

 Step 1 (removing 
partial charges)

a
 

Step 2 (soft-core 
transformation)

a
 

Step 3 (adding 
partial charges)

a
 

Overall 
(Step1+Step2+Step3)

a
 

ΔΔGWT→V203A 

with PT70 
0.70 ± 0.01 -0.89 ± 0.16 0.71 ± 0.04 0.52 ± 0.12 

ΔΔGWT→I215A 

with PT70 
0.03 ± 0.02 0.06 ± 0.04 0.24 ± 0.05 0.32 ± 0.07 

a
1 ns TI results. 
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Combining the umbrella sampling and TI results, the data suggest that the I215A and 

V203A mutants change mainly the transition state. By measuring the average step and shear 

torsions of the PNEB trajectories and obtaining the corresponding free energy values from the 

2D PMF, we were able to get a 1D PMF along the open-closed path. Figure 4.15 shows the 

corresponding spots in the 2D PMF where the free energy values were extracted for 1D PMF.  

 

 

Figure 4.15. The corresponding spots where free energy values were extracted for 1D PMF. 

(A) Wild type (B) I215A mutant (C) V203A mutant. 

 

We calibrated the offset of mutants in closed state from the results of TI (wild-type 

closed state was set to 0) and plot a 1D PMF to map the relative free energy between wild-type 

and mutants. 1D PMF shows that the I215A and V203A mutations stabilize ~3.0 kcal/mol
 
at the 

transition state and destabilize ~0.5 kcal/mol at the ground state (Figure 4.16). Because the 

I215A and V203A mutants predominantly decrease the energy barrier at the transition state 

rather than change of the ground state, this reinforces our hypothesis that the steric clashes 

between V203 and I215 control the closed to open conformational changes. 
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Figure 4.16. 1D PMF of wild-type, I215A, and V203A InhA with PT70. Mutations 

predominantly stabilize the transition state. Statistic error was the difference between two 

independent runs. 

 

4.3.7 Regain of energy barrier 

 

We hypothesized the steric clashes of side chain atoms between residues V203 and I215 

control the conformational changes of InhA. We confirmed that replacement of residues V203 

and I215 with alanine decreased the steric hindrances, and resulted in decrease of energy barrier. 

If this hypothesis is correct, the reduced energy barrier in the mutants should be recoverable by 

restoring steric clashes at the transition state. We approached this goal in two ways. First, we 

hypothesized that if making one side chain of the pair smaller abrogated the energy barrier, 

increasing the size of the partner side chain might restore the clash in a double mutant. Secondly, 

we hypothesized that bulky substituents on the alkyl tail of the inhibitor would be able to reach 

the region where the steric clash occurs in the wild-type InhA and compensate for the smaller 
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side chain in the mutant. If this model is correct, we expect inhibitors modified in this manner to 

exhibit energy barrier for the mutant InhA. 

We explored several double mutants to recover the energy barrier. For the V203A mutant, 

we changed I215 to the larger Phe (InhA
V203A/I215F

), Met (InhA
V203A/I215M

), and Gln 

(InhA
V203A/I215Q

). The PMFs of InhA
V203A/I215F

:NAD
+
:PT70 and InhA

V203A/I215M
:NAD

+
:PT70 

complexes show a <1 kcal/mol increase in the energy barrier from open to closed (Figures 

4.17A, 4.17B and Table 4.1). The InhA
V203A/I215Q

:NAD
+
:PT70 complex recovers the highest 

energy barrier among the double mutants and has 2.30 ± 0.25 kcal/mol energy barrier from open 

to closed (Figure 4.17C and Table 4.1). However, it is still smaller compared to the wild type. 

The possible reason is that the wild type clash pair has two β-branched side chains and is 

difficult to avoid the rotamer changes. 

For the I215A mutant, we also changed its clash partner V203 to Phe (InhA
V203F/I215A

). 

However, the PMF in this case shows no significant energy barrier from open to closed (Figure 

4.17D and Table 4.1). In addition, we changed V203 to Leu (InhA
V203L/I215A

) for I215A mutant, 

but the PMF shows that InhA
V203L/I215A

:NAD
+
:PT70 complex favors the open rather than closed 

state (Figure 4.17E and Table 4.1). The results of double mutants suggest that the energy barrier 

at transition state can be partially recovered if new steric clash is reintroduced during the loop 

closing step. 
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Figure 4.17. PMF of double mutants. (A) InhA
V203A/I215F

:NAD
+
:PT70  (B) 

InhA
V203A/I215M

:NAD
+
:PT70 (C) InhA

V203A/I215Q
:NAD

+
:PT70 (D) InhA

V203F/I215A
:NAD

+
:PT70  

(E) InhA
V203L/I215A

:NAD
+
:PT70. 

 

Although we attempted to recover the energy barrier at transition state by double-mutant 

designs, the open to closed energy barrier is never as high as the wild type (Figure 4.9A and 

Table 4.1). Nevertheless, in most drug discovery programs it is unrealistic to change the protein 

sequence to make inhibitors perform better. We therefore hypothesized that we could apply the 

same rationale that worked for the side chains, but applied to the ligand in order to recover a 

steric clash at the transition state. We speculated that a compound fit in the closed state and 

create steric clashes with residue V203/A215 would be an ideal compound to recover energy 

barrier. After examining the structure and location of the inhibitor in the transition state, we 

focused on the alkyl tail of PT70 where an appropriately bulky group could crowd the binding 

loop during closing and compensate for the smaller side chain in the mutant enzyme. We 
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selected the inhibitor 5-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-2-(o-tolyloxy)phenol (denoted 

PT163), intended to recover transition state barrier for I215A. In Figure 4.18, we show PT163 

docked to closed InhA
I215A

; as expected, the phenyl group on the tail region fits into the empty 

space at A215 near V202 and L218. We expected that the phenyl moiety could play a role in 

producing a steric conflict with V203 in the I215A mutant, analogous to I215 in the wild type. 

We repeated the computational protocol described above using the I215A mutant with PT163 

(InhA
I215A

:NAD
+
:PT163). As expected, the barrier between closed and open forms of the I215A 

mutant is much higher with PT163 than for PT70 (Figure 4.19A and Table 4.1). Further 

evidence that the energy barrier arises from the designed effect is shown in Figure 4.19B, where 

we show that the profile for the distance between V203 and A215 is comparable to PT70 with 

the wild type InhA that a “hump“ appears at the transition state. 
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Figure 4.18. Docked model of PT163 (orange) showing interactions with the binding loop of 

InhA
I215A

.  

 

           

Figure 4.19. Simulation results for loop closing in the InhA
I215A

:NAD
+
:PT163 complex. (A) 

PMF profile (B) Backbone distance between residues V203 and A215. Both plots are similar to 

those obtained with PT70 with wild type InhA, suggesting that the modification in PT163 

restores the energy barrier that was lost in the I215A mutant with PT70. 
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We speculated the bulky tail of PT163 could also change the binding at the ground state 

since this larger inhibitor can make more extensive contact with the surrounding residues. To 

examine how PT163 changes the binding at the ground state, we calculated the relative binding 

free energy between PT163 and PT70 in I215A mutant using TI approach. The TI result shows 

that the overall binding free energy of PT163 weakens by 5.58 ± 0.76 kcal/mol compared to 

PT70 at the closed state (Figure 4.20A and Table 4.3).  

 

 

Figure 4.20. (A) 100 ps to 1 ns InhA:NAD
+
:PT70→PT163 TI results and (B) The 

corresponded spots in the InhA
I215A

:NAD
+
:PT163 where the free energy values were 

extracted for 1D PMF. 

 

Table 4.3. Thermodynamic integration results. 

 Step 1 (removing 
partial charges)

a
 

Step 2 (soft-core 
transformation)

a
 

Step 3 (adding 
partial charges)

a
 

Overall 
(Step1+Step2+Step3)

a
 

ΔΔGPT70→PT163 

in I215A mutant 
1.45 ± 0.06 -0.83 ± 0.46 4.96 ± 0.15 5.58 ± 0.76 

a
1 ns TI results. 
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Combining the umbrella sampling and TI results suggests that the PT163 indeed 

increases the energy barrier at the transition state in the I215A mutant. The 1D PMF shows that 

the PT163 destabilizes ~8.6 and ~5.6 kcal/mol at the transition and ground states, respectively 

(Figure 4.21), confirming the design goal; the bulky group indeed has a larger (3.0 kcal/mol) 

impact on the  energy barrier than on binding affinity. Again, these results reinforce our 

confidence that a steric clash between the two helices of the active site loop is the source of the 

barrier controlling conformational changes between open and closed states, and that this 

mechanism can be explained productively through future, more detailed rational ligand design 

efforts. 

 

 

Figure 4.21. 1D-PMF of I215A with PT70 and PT163. By comparing to PT70, PT163 

destabilizes the transition state to a significantly larger amount than the ground states. Statistic 

error was the difference between two independent runs. 
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We attempted to dock several designed inhibitors to the V203A mutant to position a 

bulky group near the A203 side chain. However, A203 is ~ 8 Å away from the tip of alkyl tail of 

PT70 and it was difficult to design a functional group to precisely fill the space. As an alternate 

approach, we selected 5-phenethyl-2-(o-tolyloxy)phenol (PT162 and Figure 4.22) and 

speculated that constraining residues M199 and I215 with the phenethyl group could be an 

alternative way to create a steric clash during the transition. We repeated the simulation protocol 

for the V203A mutant with PT162 (InhA
V203A

:NAD
+
:PT162). The PMF was consistent with our 

expectation of a less-flat energy landscape; the energy barrier from open to closed (1.41 ± 0.77 

kcal/mol) is modestly higher than the InhA
V203A

:NAD
+
:PT70 complex (Figure 4.23 and Table 

4.1). However, because the closed and open states have similar energy and the barrier between 

them is relative small, the complex is unlikely to exhibit slow-onset inhibition behavior. 

 

 

Figure 4.22. Docked model of PT162. 
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Figure 4.23. The PMF of InhA
V203A

:NAD
+
:PT162 complex. The PMF has a modest 

incensement of energy barrier in the closed to open path. 

 

4.3.8 Transferability of the model to other pathogens 

 

We predict a similar potential for steric hindrance, and thus opportunity for slow-onset 

inhibition, in other FabI enzymes. We superimposed InhA with other FabIs (E. coli (24), 

Francisella tularensis (158), Staphylococcus aureus (159), Bacillus subtilis (160), Helicobacter 

pylori (161), and Bacillus anthracis (162)) and found conserved residues Ala and Phe 

corresponding to the residues V203 and I215 of InhA (Figure 4.24). Similar to InhA, these FabI 

enzymes have closed and ordered α-helix 6 to represent the closed state. However, helix-6 

appears disordered in the open state. This is likely because these FabIs have shorter active-site 

helix 6, and when the active site opens, helix-6 loses stabilizing contacts. Because the Ala and 

Phe are conserved, we speculate that steric clashes between residues F203 and A197 (using E. 

coli residue numbering) might produce slow-onset inhibition in these FabIs.  
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Figure 4.24. The superimposed structure of MTB InhA and E. coli FabI. 

 

4.3.9 Energy profile of Staphylococcus aureus FabI 

 Staphylococcus aureus is a dangerous pathogen to immunocompromised patients in 

hospital (163, 164). S. aureus infection becomes a serious problem since the methicillin-resistant 

strains were found (165). There is an emerging need for new drugs that target S. aureus. FAS II 

pathway is a promising target since humans do not have this long chain fatty acid synthesis 

pathway. Among the FAS II enzymes, FabI (homologue of InhA) enzyme has been most studied 

in terms of drug discovery. Currently, there are three saFabI inhibitors in clinical trials (166-168).  

 Slow-onset inhibition property is also found in Staphylococcus aureus FabI (saFabI). 

Previous studies indicated some diphenyl either compounds are slow-onset inhibitors of saFabI 

(152, 169, 170). The active-site helix-6 dis/ordered scenario is also observed in the saFabI. The 

apo crystal structure has a disordered active-site helix-6, suggesting this helix-6 is highly flexible 

in the absence of ligand. On the other hand, when saFabI is bound with a slow-onset inhibitor 
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PT4, the helix-6 region forms an ordered helical conformation. Because the open-closed 

conformational change in the InhA is hypothesized to be correlated with the slow-onset 

inhibition, it would be interesting to know whether the saFabI enzyme also has similar structural 

mechanism of slow-onset inhibition.  

Because the NEB simulation setup requires two endpoints structure and there is no 

available open conformation of saFabI, we modeled the open active-site conformation from the 

closed conformation. We used steered MD simulation approach to push helix-6 away from 

strand-4 to generate an open active-site. As mentioned in 4.3.8, FabI has a short helix-6, it is 

expected this helix will become distorted when the active-site is open. The steered MD result, as 

expected, helix-6 had a distorted helical conformation (Figure 4.25). 

 

Figure 4.25. closed and open conformation of saFabI. The open active-site has a distorted 

helix-6. 

 

 We adapted the InhA PNEB/US protocol for the saFabI simulations. The PNEB approach 

was used to generate low energy path structures between the open and closed states followed by 
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umbrella sampling to get the free energy profiles. The closed conformation was taken from the 

crystal structure (PDB ID: 4BNH) while the open conformation was taken from the above 

steered MD result. From the enzyme kinetics study, PT4 and PT1 are slow-onset inhibitors of 

saFabI with a residence time of 460 and 80 minutes, respectively (152). If the open-closed 

conformational change is the rate limited step where experiments measured, and the reaction 

coordinates used in the umbrella sampling properly captures this motion, we expect these 

complexes will have a slow-onset inhibition PMF – the closed state is the global minimum and 

an energy barrier in between closed and open states.  

 The PMFs of saFabI:NADP
+
:PT4 and saFabI:NADP

+
:PT1 complexes had a slow-onset 

inhibition energy landscape. The PMF of saFabI:NADP
+
:PT4 complex demonstrates that the 

closed state is the global minimum and an energy barrier between closed and open state (Figure 

4.26A). The energy barriers from closed to open and open to closed are ~4 kcal/mol and ~2 

kcal/mol, respectively. These values are smaller than the InhA:NAD
+
:PT70 complex, which are 

6.70 kcal/mol and 3.26 kcal/mol, respectively. To know whether other slow-onset inhibition 

complexes also have similar energy profile, we performed same simulation on another slow-

onset inhibitor PT1. From the enzyme kinetics study, PT1 has a residence time of 80 minutes 

that is 1/6 time shorter than PT4 (152). Because PT1 has smaller residence time than PT4, we 

expect this complex would have smaller energy barrier in the PMF. Similar to 

saFabI:NADP
+
:PT4 complex, the closed conformation is the global minimum in the PMF of 

saFabI:NADP
+
:PT1 complex, and an energy barrier separates the closed and open states (Figure 

4.26B). The energy barriers from closed to open and open to closed are ~3.5 kcal/mol and ~1.5 

kcal/mol, respectively. Although the difference of energy barrier between PT4 and PT1 complex 
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is only 0.5 kcal/mol, it seems the PMFs have a positive trend: longer residence time inhibitor has 

higher energy barrier.  

  

 

Figure 4.26. The PMFs of (A) saFabI:NADP
+
:PT4 and (B) saFabI:NADP

+
:PT1 complexes.  

 

The small difference of energy barrier between saFabI:NADP
+
:PT4 and 

saFabI:NADP
+
:PT1 complexes might  be due to reaction coordinate problem. It is possible the 

reaction coordinate adapted from InhA could not capture the open-closed motion in the saFabI 

system. Another possibility is that the open-closed conformation change is not the rate limited 

step where kinetics experiment measured. If the later one is the case, the rapid reversible 

complex would also have similar energy profile as the slow-onset inhibition complex does. To 

examine whether this is the case as well as to provide a control set, a simulation of rapid 

reversible complex would be required. 

To know the energy profile of a rapid reversible complex, inhibitor PT166 was selected. 

According to enzyme kinetics result (unpublished result by Andrew Chang), PT166 is a rapid 



 

127 
 

reversible inhibitor of saFabI. As the PMF shown in Figure 4.27, the closed state is still the 

global minimum, suggesting this complex still favors the closed state. The energy barrier from 

closed to open is ~2.5 kcal/mol while the open to closed path is ~1 kcal/mol. There is a ~1 

kcal/mol energy barrier difference between the slow-onset saFabI:NADP
+
:PT4 and rapid 

reversible saFabI:NADP
+
:PT166 complexes in the open-to-closed path. By comparing all saFabI 

PMFs, it seems the energy profiles have a good trend between slow-onset and rapid reversible 

complexes. However, because the ~1 kcal/mol small energy difference between slow-onset and 

rapid reversible complexes, we cannot conclude whether open-closed conformational change is 

correlated with slow-onset inhibition in the saFabI enzyme. For future study of saFabI, better 

reaction coordinates will be required. 

 

 

Figure 4.27. PMF of saFabI:NADP
+
:PT166 complex. 
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4.3.10 Perspective and limitations for designing new InhA inhibitors 

 

 For future InhA lead optimization, especially for tight binding inhibitors, it is very 

challenging to increase the residence time by solely considering improving the binding affinity. 

Increase of the free energy barrier by introducing unfavorable interactions along the active-site 

loop closing step may be a more feasible approach. Although one can apply the protocol we 

present here to screen candidate inhibitors for significant energy barriers prior to in vitro/vivo 

experiments, one should also consider the limitations of this approach. 

 The first limitation is that umbrella sampling requires well-defined reaction coordinate(s). 

It is always challenging to define complex dynamics using a small number of descriptors, since 

molecular motion can be inherently high dimensional. If the defined reaction coordinate(s) do 

not accurately describe/capture the motion that corresponds to the energy barrier, the umbrella 

sampling results would underestimate the true free energy barrier  (171). However, if considering 

the balance between accuracy and computing time of umbrella sampling, it seems less than three 

reaction coordinates is commonly used currently (172). Furthermore, the energy barriers 

obtained from the PMF do not directly correspond to rate constants, and more complex 

approaches would be needed to more accurately predict kinetics (173, 174). Thus, we use our 

umbrella sampling results as a qualitative guide. 

 A second limitation in using a transition state model to predict changes to residence times 

is that the closing pathway, and hence the transition state may change with different inhibitors. If 

considering the roughness of energy landscape in a higher dimension, there will be multiple 

paths for the active-site loop closing. Raising the barrier on a given path may lead to the loop 
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closing via a different path, potentially needing reevaluation of the reaction coordinate 

descriptors.  

 Third, it is always very challenging to increase energy barrier at the transition state 

without altering the ground state for the active-site loop closing. Careful structural visualization 

should be performed to understand whether such effects may occur; as described above, binding 

affinity calculations can be used to separate these two effects (ground state vs. transition state), 

but these calculations can be computationally intensive. 

 

4.4  Summary 
 

In summary, we show here that computationally mapping the pathway of loop closing 

allows us to obtain models for the transition state. The free energy profiles demonstrate that rapid 

reversible inhibitor complexes exhibit two types of PMF, either preferring the open state, or 

having little preference and low energy barrier between the open and closed states. On the other 

hand, slow-onset inhibition complexes have a relative stable closed state with a more significant 

energy barrier between the open and closed states. These PMF profiles support the induced-fit 

models which the enzyme inhibitor initial form in an open state, followed by an isomerization 

step, leading to a more energetic favorable closed state. These open and closed states are 

matched well to the two-step slow-onset binding mechanism, where open and closed 

conformations represent the EI and EI* states, respectively. 

Analyses of these structures provide insight into the specific interactions that modulate 

the energy barrier. We hypothesized that a steric clash between side chains on 2 helices that pass 

closely during loop closing are responsible for the binding kinetics. The model suggests that 
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replacement of residues V203 and I215 with amino acids possessing smaller side chains would 

remove the steric clash. Computational mutagenesis studies of the InhA
V203A

 and InhA
I215A

 

mutants substantiated the expected decreases in the free energy barrier.  

To confirm that the pair interaction is important, we determined that increase in size of 

one clash partner can compensate somewhat for reduced size in the other; the double mutant 

V203A/I215Q shows increased computational barrier heights as compared to the single V203A 

mutant. Further evidence of the validity of this model is provided by rationally redesign inhibitor 

PT163 to restore the energy barrier as the designed inhibitor compensates the reduced clash 

partner V203/I215A and recreates steric clashes in the loop closing path in the mutant InhA.  

The ability to rationally remove energy barrier through a protein mutation, partially 

recover it with a double mutant, and then selectively restore it in the single mutants with a ligand 

modification strongly supports the model of the steric clash mechanism that a crowded active-

site environment created by inhibitor, particularly restraints on residues M199, V203A, A211 

and I215, controls the loop closing step. We conclude that steric clashes between the active site 

loop helices control the conformational changes between open and closed states of InhA and this 

information can be used for future inhibitor design to increase the residence time of receptor-

inhibitor complex, such as using portion of inhibitor to constraint the steric clashes. Examination 

of homologous FabI sequences in other pathogens reveals similar interactions between the 

corresponding loops, suggesting that this may be a general approach for developing slow-onset 

inhibitors of this critical pathway. 
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Chapter Five 

Virtual screening of new slow-onset InhA inhibitors 

 

5.1  Introduction 
 

Slow-onset inhibitors are of particular interests in drug discovery programs as the slow 

dissociation of the inhibitor from the target-inhibitor complex prolongs target occupancy and 

improves in vivo efficacy. To understand the role of residence time in modulating inhibitor 

activity in the InhA system, inhibitors of different residence time ranging from minutes to hours 

will be required. However, this is limited by the small numbers of known InhA inhibitors. In this 

chapter, we tried to use computational approaches to screen new slow-onset inhibitors of InhA. 

As mentioned in chapter four, a slow-onset inhibition complex of InhA would prefer closed state 

and have a high energy barrier between the closed and open states. It would be valuable if we use 

the resulting PNEB and umbrella sampling (US) protocols to find out some inhibitors with high 

transition state barrier. In the first part of this chapter, we used the PNEB/US approaches to 

virtually screen slow-onset inhibitors of InhA. We simulated the PT163 analogues complexes 

and some known MIC (minimum inhibitory concentration) compounds.    

In the second part of this chapter, we tried to develop a docking protocol to rapidly screen 

the slow-onset inhibitor. The free energy profile derived from the PNEB/US approach can be 

used to distinguish rapid reversible and slow-onset inhibitors; however, the PNEB/US approach 

is computationally expensive and time-consuming. It is unlikely to use this approach to examine 

every inhibitor we are interested in, thus, a rapid screening approach is needed to facilitate the 

inhibitor screening process. We thought that the docking calculation has the potential to rapidly 
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examine the inhibitor’s binding free energies at the closed, open, and transition states. To know 

whether the docking calculation can reproduce the same trend of the binding free energies at the 

closed, open, and transition states, we compared the dock scores of five slow-onset and five rapid 

reversible inhibitors calculated by DOCK (140) program. The dock scores had the same trend as 

the umbrella sampling results: the closed state had lowest score among three states, and 

transition state had higher energy barriers for the slow-onset inhibitors than the rapid reversible 

inhibitors did. The application of docking score could provide an opportunity to pre-examine 

inhibitor binding affinity before time-consuming PNEB/US simulations.  

 

5.2  Simulation detail 
 

5.2.1 Initial structures 

 

The InhA:NAD
+
:PT70 and InhA:NAD

+
:C16-NAC structures (PDB ID: 2X23 (13) and 

1BVR (11), respectively) were used to build the starting structures of closed and open states. For 

those inhibitors that do not have crystal structures, the initial poses were obtained from 

molecular docking with DOCK 6.3 package (140). The sphere and grid files were generated from 

SPHGEN and GRID modules of DOCK 6.3, respectively. The grid file for the grid-based energy 

scoring had a space of 0.3 Å. Default parameters were used in the flexible docking. We assumed 

the analogues occupy similar position as PT70 does, thus the result with a lowest RMSD value 

in the diphenyl ether moiety was chosen as the initial pose. 
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5.2.2 Molecular dynamics simulation setup 

 

AMBER ff99SB (26) and GAFF (115) force field were assigned to the protein and 

inhibitor, respectively. The force field of cofactor NAD
+
 was taken from other studies (118, 119). 

The partial atomic charges of inhibitors were computed using Gaussian98 (153) with the HF/6-

31G* basis set, followed by RESP fitting (46, 116). Each complex was solvated in a truncated 

octahedral TIP3P (120) water box with a minimum distance of 8 Å between the water box edge 

and solute, resulting in ~ 23,000 atoms in total. SHAKE (155) was used to constrain bond 

lengths involving hydrogen. The particle mesh Ewald method (156) was used for calculating 

electrostatic energy with an  8 Å nonbonded cutoff. Each system was equilibrated initially by 

high restraints on non-water atoms, and gradually reduced and removed the positional restraints 

on the backbone atoms using the following procedures. The first step was 10,000 steps of 

steepest descent minimization with 100 kcal mol
-1

 Å
-2

 restraints on all atoms except water 

molecules and hydrogen atoms. The second step was heating the system from 100 to 300 K at 

constant volume over 100 ps with 100 kcal mol
-1

 Å
-2

 restraints on non-water and non-hydrogen 

atoms, followed by 100 ps with the same restraints at constant 300 K temperature and 1 atm 

pressure. The third step was 250 ps MD with restraint weight of 10 kcal mol
-1

 Å
-2

 on the non-

water and non-hydrogen atoms at constant 300 K temperature and 1 atm pressure. The following 

steps only restrained the backbone atoms and gradually reduced the restraints weight from 10 to 

0.1 kcal mol
-1

 Å
-2

 at constant 300 K and 1 atm. This was carried out by 100 ps with 10 kcal mol
-1

 

Å
-2

 restraint, followed by 100 ps with 1 kcal mol
-1

 Å
-2

 restraint, and 100 ps with 0.1 kcal mol
-1

 Å
-

2
 restraint. 
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5.2.3 PNEB simulation 

 

The partial nudged elastic band (PNEB) (95) simulation approach was used in this study 

to generate structure models along the low-energy pathway between the open and closed 

conformations. The equilibrated open and closed structures were treated as the two end-point 

structures and 30 windows (including end-points) were used in the simulation. A spring force 

was applied to the backbone atoms of α-helices 6 and 7 (residues 196 to 223) in the subsequent 

steps. In the first 40 ps, the system was equilibrated at 300 K with a Langevin collision 

frequency of 50 ps
-1

 and spring force of 20 kcal mol
-1

 Å
-2

. The next step was 100 ps equilibration 

at 300 K with a 20 ps
-1

 Langevin collision frequency and a spring force of 75 kcal mol
-1

 Å
-2

. 

After the conformations were generated along the open-to-closed path, simulated annealing was 

used to optimize the local energy minimized path. This was done by heating the system from 300 

to 375 K gradually over 175 ps, and subsequently cooling back to 300 K gradually over 175 ps 

with a 20 ps
-1

 Langevin collision frequency and a spring force of 75 kcal mol
-1

 Å
-2

. A 20 kcal 

mol
-1

 Å
-2

 Cartesian restraint was applied to the backbone atoms from residues 2 to 195 and 225 

to 268 to prevent protein unfolding during the heating process. After this simulated annealing, a 

600 ps production run was performed with the same Langevin collision frequency and spring 

force at 300 K. To prevent large conformation changes on regions outside helices 6 and7, a 10 

kcal mol
-1

 Å
-2

 Cartesian restraint was applied to the backbone atoms from residues 2 to 195, and 

225 to 268 during the production run. 
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5.2.4 Umbrella sampling 

 

Energy landscapes were obtained by umbrella sampling (US). Two reaction coordinates 

(step and shear torsions) were used to describe the motion of helices 6 and 7. US windows were 

spaced at 3º increments in both step and shear torsions. An extra 6º buffer region was added 

around the grid region sampled in the PNEB simulation, resulting in a total of 192 grid points. 

Initial structures at each grid point were selected from the PNEB production trajectories with 

dihedral values (step/shear torsions) closest to the respective grid point. 500 ps MD simulation in 

the NVT ensemble at 300 K with a Langevin collision frequency of 75.0 ps
-1

 was performed for 

each grid point. The Weighted Histogram Analysis Method (WHAM) (98) approach and analysis 

program (96) was then used to obtain the potential of mean force (PMF) from the umbrella 

sampling results. 

 

5.2.5 Docking calculation 

 

 Two sets of closed, open, and transition state structures were generated (6 receptor 

structures). The first set of receptor structures were from the triclosan bound PNEB snapshots. 

Another set of receptor structures were from the PT70 bound PNEB snapshots. The receptor 

structure of each state was the representative structure based on the clustering analyses. Docking 

calculation was performed with DOCK 6.3 package (140). The sphere and grid files were 

generated from SPHGEN and GRID modules of DOCK 6.3, respectively. The grid file for the 

grid-based energy scoring had a space of 0.3 Å. Default parameters were used in the flexible 
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docking. We assumed the inhibitors occupy similar position as PT70 does, thus result with a 

lowest RMSD value in the diphenyl ether moiety was chosen as the correct pose. 

 

5.3  Results and Discussion 

 Slow-onset inhibitors are of particular interest in drug discovery programs as the slow 

dissociation of the inhibitor from the target-inhibitor complex prolongs target occupancy and 

improves in vivo efficacy. In order to validate the role of residence time in modulating inhibitor 

activity in the InhA system, inhibitors with different residence time are needed. There are only a 

few known slow-onset inhibitors of InhA. Computational simulation could assist the inhibitor 

screening process by calculating the inhibitor’s energy profile. As shown in Chapter four, a slow-

onset inhibition complex of InhA shall prefer closed state and have an energy barrier between the 

closed and open states. The resulting PNEB and umbrella sampling (US) protocols have the 

potential to screen slow-onset inhibitors of InhA. We first tried to screen some PT163 analogues 

(Table 5.1), followed by some known MIC (minimum inhibitory concentration) compounds. 

 

Table 5.1. PT163 analogues. 

Code Structure Code Structure 

PT163 
O

OH

N

NN

 

SB94 
O

OH

N

NN

 
 

SB92 O

OH

N

NN

 

SB101 
O

OH

N

NN

Cl
 

SB93 
O

OH

N

NN

 

SB102 
O

OH

N

NN
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5.3.1 Energy profiles of PT163 analogues 

 

 In chapter 4, we showed that PT163 recovered the transition state barrier for the I215A 

mutant by introducing a bulky functional group which mimics the sidechain of residue I215 to 

create steric clashes with residue V203. For the wild-type InhA, PT163 is a good starting 

structure for designing inhibitor with higher transition state barrier. In principle, an appropriate 

size of bulky tail could create a higher energy barrier. To know how the bulky tail tunes the 

transition state barrier, we simulated different PT163 analogues (Table 5.1) bound complexes. 

 We first simulated the PT163 bound with wild-type InhA. The PMF of 

InhA
WT

:NAD
+
:PT163 complex exhibited a slow-onset inhibition profile – a preference for the 

closed state with an energy barrier at the transition state (Figure 5.1). The energy barriers in the 

open-to-closed and closed-to-open paths are ~2.2 kcal/mol and ~6.7 kcal/mol, respectively. The 

energy barrier from closed to open is similar to the InhA
WT

:NAD
+
:PT70 complex, but the open-

to-closed path is ~1 kcal/mol less than the InhA
WT

:NAD
+
:PT70 complex (Figure 4.9A and 

Table 4.1). 
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Figure 5.1. PMF of InhA
WT

:NAD
+
:PT163 complex. The PMF exhibits a slow-onset inhibition 

profile. 

 

To understand the change of relative binding affinity between inhibitors PT163 and 

PT70 as well as to calibrate the offset of ground state between these two inhibitors, 

thermodynamic integration (TI) calculation was performed in the closed state. Surprisingly, the 

closed state destabilized 4.9 ± 0.2 kcal/mol (Table 5.2). According to the equation of ΔG = -RT 

ln(Ki
1
/Ki

2
), this ~5 kcal/mol decrease of binding affinity will increase Ki by ~1000 folds from 

pM level to nM level. Although InhA
WT

:NAD
+
:PT163 complex exhibits a slow-onset inhibition 

energy profile, the decrease of binding affinity at the closed state may pose PT163 a less potent 

inhibitor of InhA. 
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Table 5.2. Thermodynamic integration result. 

 Step 1 (removing 
partial charges)

a
 

Step 2 (soft-core 
transformation)

a
 

Step 3 (adding 
partial charges)

a
 

Overall 
(Step1+Step2+Step3)

a
 

ΔΔGPT70→PT163 

in wild-type InhA 
1.51 ± 0.15 -1.48 ± 0.56 4.90 ± 0.28 4.93 ± 0.37 

a
1 ns TI results. Statistical error was the difference between two independent runs. 

 

 In order to know how the bulky tail of inhibitor tunes the energy barrier, a series of 

modifications of the tail were tested (Table 5.1). We first tested three smaller size compounds 

(SB92, SB93, and SB94). Surprisingly, the global minimum shifted from the closed state to the 

open state in the SB92 and SB93 ternary complexes, suggesting these complexes changed mainly 

the preference for the closed/open conformation rather than the transition state barrier (Figures 

5.2A, 5.2B). The SB94 bound complex had equal preference for the closed and open states 

(Figure 5.2C). On the contrary, when the size of tail increased (SB101 and SB102), the open 

state became less favorable (Figures 5.2D, 5.2E). As a result, the open-to-closed barrier became 

very small or disappeared. 
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Figure 5.2. PMF of PT163 analogues. 

 

5.3.2 Energy profiles of known minimum inhibitory concentration (MIC) compounds 

 

Since there is an urgent need for the discovery of new anti-TB agents as well as to 

facilitate TB drug research, several groups have shared their in vivo high-throughput screening 

results to public (175, 176). PubChem, a cheminformatics database, stores many biological 

activities information for small molecules (177, 178). There are ~ 10,000 compounds in 

PubChem that have inhibition activity against TB, however, for most of these inhibitors the 

targeted enzymes are unknown. In this section, some PT70-like known MIC compounds were 
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selected and tested by the PNEB/US simulations to see whether they exhibit a slow-onset energy 

profile (Figure 5.3). The rationale is that if the compound exhibits a slow-onset inhibition energy 

profile, there is a high possibility that this compound is a slow-onset inhibitor of InhA. 

 

 

Figure 5.3. Procedure of mining known MIC compounds. 

 

Table 5.3 lists the compounds we selected from the PubChem database. These 

compounds have MIC90 (minimum inhibitory concentration) in μM. We performed PNEB and 

US simulations for these compounds. The energy profiles demonstrated that inhibitors 

CID4851382 and CID18580849 had high energy barriers in the closed to open path, but low 

energy barriers in the open to closed path (Figures 5.4A, 5.4B), while inhibitor CID992163 had 

a low energy barrier between open and closed states (Figure 5.4C). Because these PMFs did not 

exhibit a slow-onset inhibitor energy profile, these compounds are unlikely to be slow-onset 

inhibitors of InhA. 
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Table 5.3. Known MIC compounds. 

CID No. Structure MIC90 

CID4851382 

Cl

S

S

O

N

N

N
N

N

H

H

 

3 μg/mL (8 μM) 

CID992163 
S

O

O

N
NNH

 

10 μg/mL (29 μM)  

 

CID18580849 

S

O

O

O

N

N

N
N

H2N

 

32 μg/mL (74 μM) 

 

 

 

Figure 5.4. PMFs of known MIC compounds. (A) CID4851382. (B) CID992163. (C) 

CID18580849. 
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One of the possibilities explains the above compounds not having good PMF could be 

that the tail region is too bulky, so we tested other compounds with simpler tails to see whether 

they exhibit a better PMF (Table 5.4). Unfortunately, none of these compounds had a good PMF 

as PT70 (Figure 5.5). 

 

Table 5.4. CID4851382 analogues. 

Code Structure Code Structure 

PT471 

S

NN
N

H

 

CID7753966 

S

S

O
O

NN
N

H

 
SB109 

S

NN
N

H

 

CID4963957 

S

S

O
O

NN
N

H

 
CID4879834 

S

S

O
O

NN
N

H
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Figure 5.5. PMF of CID4851382 analogues. (A) PT471. (B) SB109. (C) CID4879834. (D) 

CID7753966. (E) CID4963957. 

 

5.3.3 What is missing in terms of inhibitor screening using the PNEB/US approach 

 

The binding free energy calculation of the ground state is required to calibrate the 2D-

PMF. As mentioned in chapters two and four, a slow-onset inhibitor of InhA would favor the 

closed state and have an energy barrier between the closed and open states. A “good” slow-onset 

inhibitor would have a strong binding affinity at the closed state and high energy barrier between 

the closed and open states. From the PNEB/US calculations, it only tells the relative energies 

between the closed, open, and transition states. It is possible that an inhibitor has a slow-onset 
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inhibition 2D-PMF but the binding affinity of the ground state is weak; in this case, since this 

inhibitor does not have a good specificity to the target, it is not likely to be a good inhibitor. We 

can use the thermodynamic integration (TI) calculation to calibrate the offset of the ground state 

as we did in chapter four. Since the TI calculation is computationally expensive, we did not 

perform this calculation for each inhibitor during the virtual screening process here. For future 

virtual inhibitor screening, calculating the binding affinity of the closed state (ie. MM/PBSA 

method) prior to the PNEB/US calculations will help to eliminate weak binding inhibitors. 

For the transition state barrier, we should also consider the limitation of umbrella 

sampling. As mentioned in chapter four, if the reaction coordinates used during the umbrella 

sampling cannot accurately capture the motion, the free energy barrier value will be 

underestimated. Because some of the inhibitors shown in this chapter have different scaffold than 

the PT70, the current reaction coordinate may not be able to capture the rare event during the 

active-site loop closing. In this case, the umbrella sampling may not deliver the true energy 

barrier.   

 

5.3.4 Examination of docking protocol 

 

PNEB/US approach can be used to distinguish rapid reversible and slow-onset inhibitors 

by comparing the energy profiles, but this approach is computationally expensive and time-

consuming. It is unlikely to use this approach to examine every inhibitor we are interested. 

Therefore, a rapid screening approach is needed to facilitate the inhibitor screening process. 

Docking approach provides a rapid calculation, but this approach is less accurate than the 

umbrella sampling. However, it will save huge time if we use docking approach to examine 
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inhibitor before PNEB/US simulation. If the dock scores of the closed/transition/open states are 

highly correlative to the PMF results, then we can use docking approach to pre-select inhibitors. 

Here, we aimed to test whether the dock score can reproduce similar trend of binding free 

energies at the closed, open, and transition states as seen in the PMF.  

Because docking approach is highly sensitive to the receptor structure of choice, we tried 

two different sets of closed/transition/open structures from different inhibitor bound PNEB 

snapshots. One set of receptor structures were from the triclosan bound PNEB snapshots and the 

other one were from the PT70 bound PNEB snapshots. We docked a series of rapid reversible 

and slow-onset inhibitors in these six receptor structures and compared their dock scores.  

 

5.3.3.1 Use of PT70 bound PNEB structures for docking calculation 

 

We first tested the slow-onset inhibitor PT70 bound PNEB receptor structures. We 

docked five slow-onset and five rapid reversible inhibitors to these receptor structures and 

compared their dock scores. For slow-onset inhibitors, the dock scores had a similar trend as 

seen in the PMF. The dock scores calculated at the closed state are between -67 ~ -70 kcal/mol, 

while the dock scores at the open state are between -61 ~ -65 kcal/mol (Figure 5.7A). The 

transition states had the highest dock scores (~-55 kcal/mol) among these three states. Overall, 

these dock scores had a same trend as the PMF, showing the closed state has a lowest free energy 

value and the transition state has the highest free energy among the three states.  

For the rapid reversible inhibitors, the dock scores calculated in the closed state are 

between -45 ~ -48 kcal/mol, while in the open conformation are between -39~ -45 kcal/mol 

(Figure 5.6A). The transition state had dock scores between -35~-42 kcal/mol. This is similar to 
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the slow-onset inhibitors, demonstrating that the closed state has lowest grid score, and the 

transition state has the highest grid score. 

To see whether the slow-onset inhibitors have higher transition state barrier than the rapid 

reversible inhibitors do, we compared the energy difference at the transition state and the ground 

states. From the PMF observation, the slow-onset inhibition complexes have a relative higher 

energy barrier compared to that of rapid reversible complexes. By comparing the difference 

between the transition and ground states of these dock scores, the ΔGridscore (transition state 

minus closed state (TS-closed) and transition state minus open state (TS-open)) demonstrated 

that the transition state barriers of the slow-onset inhibition complexes are larger than the rapid 

reversible inhibition complexes (Figure 5.6B). For the slow-onset inhibitors, the average 

ΔGridscore of TS-open and TS-closed are ~15 kcal/mol and ~9 kcal/mol, respectively. These 

values are ~4 kcal/mol larger than those of rapid reversible inhibitors, which are 10 kcal/mol and 

5 kcal/mol, respectively. These ΔGridscore have a similar trend as seen in the PMFs: the rapid 

reversible inhibition complexes have smaller energy barriers than the slow-onset inhibition 

complexes. 
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Figure 5.6. Grid score calculated from the PT70 bound PNEB open, transition state, and 

closed structures. (A) Grid score. (B) ΔGrid Score.  

 

5.3.3.2 Use of triclosan bound PNEB structures for docking calculation 

 

From the above results, it seems the dock scores reproduce the free energy pattern of the 

PMF; however, it may bias by the selected receptor structures. Next, we tried the rapid reversible 

inhibitor triclosan bound PNEB receptor structures. We docked the same five slow-onset and 

five rapid reversible inhibitors to the receptor structures and compared their dock scores. 

For the slow-onset inhibitors, the dock scores calculated in the closed and open states are 

between -65 ~ -67 kcal/mol and -54 ~ -57 kcal/mol, respectively. The dock scores at the 

transition state are -37 ~ -48 kcal/mol and are higher than those calculated in the closed and open 

structures. These results also had a same trend as the PMF, demonstrating the closed state is 

energetic favorable than the open state (Figure 5.7A). For the rapid reversible inhibitors, the 

closed state dock scores are between -44 ~ -47 kcal/mol, while the open state dock scores are 

between -35 ~ -40 kcal/mol. The dock scores of transition state structure are between -35 ~ -38 

kcal/mol.  
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Similar to the above results, the transition state barriers for the slow-onset inhibitors are 

larger than the rapid reversible inhibitors. For the slow-onset inhibitors, the average ΔGridscore 

of TS-open and TS-closed were 21 kcal/mol and 11 kcal/mol, respectively (Figure 5.7B). These 

values are 8~11 kcal/mol larger than those values of the rapid reversible inhibitors, which are 10 

kcal/mol and 2 kcal/mol, respectively. 

 

 

Figure 5.7. Grid score calculated from the triclosan bound PNEB open, transition state, 

and closed structures. (A) Grid score. (B) ΔGrid Score.  

 

The energy barriers calculated from the triclosan bound PNEB structures are higher than 

those from the PT70 bound PNEB structures. The ground state dock scores calculated using the 

triclosan bound PNEB structures roughly shifted ~3 kcal/mol compared to those calculated 

using PT70 bound PNEB structures (Figures 5.7A, 5.8A). Moreover, the slow-onset inhibitors 

had higher energy barriers in the triclosan bound PNEB structures. For the PT70 bound PNEB 

structures, the average energy barrier from the closed state to the transition state is ~15 kcal/mol. 

This energy barrier went up to ~21 kcal/mol in the triclosan bound PNEB structures. It is 
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possible that the PT70 bound active-site pockets and the resulted PNEB closed/transition/open 

states structures were “preset” for the PT70-like inhibitors (particularly the slow-onset 

inhibitors). Therefore, slow-onset inhibitors had more favorable dock scores. On the contrary, the 

active-site pockets from the triclosan bound PNEB structures are smaller, so that the slow-onset 

inhibitors might bump to the receptor, resulting in an unfavorable dock scores. 

In contrast, for the rapid reversible inhibitors, the energy barriers from the closed state to 

the transition state are very similar (both were ~10 kcal/mol) in both PT70 bound PNEB and 

triclosan bound PNEB structures. Because PT70 has larger structure than triclosan, the PT70 

bound active-site pocket is expected to be larger than the triclosan bound one. The larger PT70 

bound PNEB active-site pockets can always tolerate the smaller triclosan-like inhibitors, so the 

triclosan analogues had similar energy barrier in both the PT70 bound PNEB and triclosan 

bound PNEB structures. 

Overall, the dock scores have the same trend as the umbrella sampling results suggested. 

For future InhA inhibitor screening, we could incorporate the docking calculation to estimate 

their free energies at the closed, open, and transition states before the computationally expensive 

PNEB and umbrella sampling calculations. Although here we only tested two sets of PNEB 

structures, it is always better to introduce more sets of closed/open/transition states structures for 

the dock calculation to limit the bias problem. 

 

5.4  Summary 
 

To validate the role of residence time in modulating inhibitor activity in the InhA system, 

inhibitors with a range of residence time from short to long are needed. Since only a few slow-
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onset inhibitor of InhA are available, we tried to screen possible slow-onset inhibitors of InhA 

with computational approaches. We first used the PNEB/US approaches to virtually screen some 

PT163 analogues complexes and some known MIC (minimum inhibitory concentration) 

compounds. However, none of them exhibits a good slow-onset inhibition PMF. 

Since PNEB and umbrella sampling calculations is computationally expensive and time-

consuming. We thought that the docking calculation has the potential to rapidly examine the 

inhibitor’s binding free energy at the closed, open, and transition states. We found the dock 

scores had the same trend as the umbrella sampling results: the closed state had lowest score 

among three states, and transition state had higher energy barriers for the slow-onset inhibitors 

than the rapid reversible inhibitors did. Since we only tested ten inhibitors and six receptor 

structures, for future virtual screening process, introducing more sets of closed/open/transition 

states structures for dock calculation will be necessary to limit the bias problem. The use of 

docking score could provide an avenue to pre-examine inhibitor binding affinity before time-

consuming PNEB/US simulations. 
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Appendix 1: Inhibitor partial charges 
 

Unit: kcal/mol 

 

Triclosan partial charges 

 2
C

C
 3

4 C

C
 5

C 6

1 C
 2
O

 7
C

8 C

9 C

C 10

C 11

12 C

Cl 2O 1

1 Cl

H 1

Cl 3

H 2

3 H

5 H

6 H

H 4

7 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.245554 C2 -0.200726 C3 -0.029640 C4 -0.087045 

C5 -0.224964 C6 0.201578 C7 0.300778 C8 -0.256649 

C9 -0.055501 C10 -0.050668 C11 -0.044691 C12 -0.031694 

O1 -0.554889 O2 -0.297574 Cl1 -0.092772 Cl2 -0.095189 

Cl3 -0.106579 H1 0.145569 H2 0.150212 H3 0.158601 

H4 0.182727 H5 0.144719 H6 0.154300 H7 0.444541 

 

 

PT3 partial charges 

 1
C

C
 2

3 C

C
 4

C 5

6 C
 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

H 8O 2

C 13

C 14

C 15

C 16

C 17

19 H

H 7

H 6

H 5

4 H

H 2

1 H

H 11

H 12

H 15

H 16

H 20

H 10H 14H 18

H 3

H 17 H 13

9 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.223315 C2 -0.007234 C3 -0.229547 C4 -0.211969 

C5 0.148221 C6 0.285367 C7 0.222865 C8 -0.135579 

C9 -0.197672 C10 -0.123410 C11 -0.197672 C12 -0.135579 

C13 -0.056773 C14 0.002988 C15 -0.002068 C16 0.026176 

C17 -0.035302 O1 -0.352217 O2 -0.609758 H1 0.180658 

H2 0.155157 H3 0.183429 H4 0.137848 H5 0.161508 

H6 0.136727 H7 0.161508 H8 0.137848 H9 0.452110 

H10 0.041085 H11 0.041085 H12 0.010396 H13 0.010396 

H14 0.009321 H15 0.009321 H16 -0.008443 H17 -0.008443 

H18 0.006989 H19 0.006989 H20 0.006989   
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PT4 partial charges 

 

 2
C

C
 3

10 C

C
 11

C 12

1 C
 2
O

 13
C

14 C

15 C

C 16

C 17

18 C

H 1O 1

C 4

C 5

C 6

C 7

C 8

C 9

H 2

H 3

H 4

5 H

H 7

8 H

H 10

H 12

H 15

H 16

H 19

21 H

H 22

20 H H 11H 14H 18

H 6

H 17 H 13

9 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.268524 C2 -0.203761 C3 -0.022553 C4 -0.103453 

C5 0.013812 C6 0.017742 C7 -0.025854 C8 0.049305 

C9 -0.044019 C10 -0.194991 C11 -0.239239 C12 0.167956 

C13 0.224557 C14 -0.133611 C15 -0.208147 C16 -0.103685 

C17 -0.208147 C18 -0.133611 O1 -0.608157 O2 -0.357438 

H1 0.138634 H2 0.162281 H3 0.131165 H4 0.16228 

H5 0.138634 H6 0.188624 H7 0.144716 H8 0.177924 

H9 0.451250 H10 0.056699 H11 0.056699 H12 0.009159 

H13 0.009159 H14 0.005925 H15 0.005925 H16 0.002696 

H17 0.002696 H18 -0.010689 H19 -0.010689 H20 0.007227 

H21 0.007227 H22 0.007227     

 

 

PT5 partial charges 

 

 2
C

C
 3

12 C

C
 13

C 14

1 C
 2
O

 15
C

16 C

17 C

C 18

C 19

20 C

H 1O 1

C 4

C 5

C 6

C 7

C 8

C 9

H 2

H 3

H 4

5 H

H 7

8 H

H 10

H 12

H 15

H 16

H 19

H 20

H 11H 14H 18

H 6

H 17 H 13

9 H

C 10

C 11

26 H

H 24

25 H

H 23

H 22

H 21

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.273801 C2 -0.292990 C3 0.016460 C4 -0.080397 

C5 0.018651 C6 0.006889 C7 -0.019985 C8 -0.013415 

C9 0.023785 C10 0.022808 C11 -0.064279 C12 -0.167562 

C13 -0.222108 C14 0.138705 C15 0.172845 C16 -0.112445 

C17 -0.193929 C18 -0.137043 C19 -0.193929 C20 -0.112445 

O1 -0.557785 O2 -0.267307 H1 0.127506 H2 0.154839 

H3 0.134906 H4 0.154839 H5 0.127506 H6 0.176353 

H7 0.143121 H8 0.151063 H9 0.431158 H10 0.046319 

H11 0.046319 H12 0.013168 H13 0.013168 H14 -0.003041 

H15 -0.003041 H16 0.008237 H17 0.008237 H18 -0.004934 

H19 -0.004934 H20 0.003729 H21 0.003729 H22 0.000503 

H23 0.000503 H24 0.010808 H25 0.010808 H26 0.010808 
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PT52 partial charges 

 2
C

C
 3

4 C

C
 5

C 6

1 C
 2
O

 7
C

8 C

9 C

C 10

C 11

12 C

H 1O 1

1 Cl

H 2

H 3

H 4

5 H

7 H

8 H

H 6

9 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.233624 C2 -0.188355 C3 -0.016323 C4 -0.075891 

C5 -0.243896 C6 0.178935 C7 0.162655 C8 -0.111744 

C9 -0.178260 C10 -0.152766 C11 -0.178260 C12 -0.111744 

O1 -0.544971 O2 -0.257369 Cl 1 -0.108545 H1 0.120878 

H2 0.154633 H3 0.140046 H4 0.154633 H5 0.120878 

H6 0.182598 H7 0.137230 H8 0.145982 H9 0.436032 

 

 

 

 

PT70 partial charges 

 1
C

C
 2

3 C

C
 4

C 5

6 C
 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

C 13O 2

C 14

C 15

C 16

C 17

C 18

C 19

H 7

H 6

H 5

4 H

H 2

1 H

H 13

H 14

H 17

H 18

H 21

24 H

H 22

23 H H 12H 16H 20

H 3

H 19 H 15

11 H H 810 H

H 9

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.305877 C2 -0.005783 C3 -0.207809 C4 -0.182149 

C5 0.112182 C6 0.269957 C7 0.123130 C8 -0.141905 

C9 -0.194331 C10 -0.164129 C11 -0.234181 C12 0.111613 

C13 -0.192668 C14 -0.013634 C15 0.024577 C16 -0.010196 

C17 -0.005967 C18 0.065218 C19 -0.045568 O1 -0.227720 

O2 -0.536475 H1 0.166880 H2 0.154695 H3 0.166490 

H4 0.133435 H5 0.156808 H6 0.145586 H7 0.161364 

H8 0.062701 H9 0.062701 H10 0.062701 H11 0.419315 

H12 0.031061 H13 0.031061 H14 0.010100 H15 0.010100 

H16 -0.000394 H17 -0.000394 H18 -0.002013 H19 -0.002013 

H20 -0.017212 H21 -0.017212 H22 0.008652 H23 0.008652 

H24 0.008652       
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PT82 partial charges 

 2
C

C
 3

12 C

C
 13

C 14

1 C
 2
O

 15
C

16 C

17 C

C 18

C 19

20 C

C 21O 1

C 4

C 5

C 6

C 7

C 8

C 9

H 4

H 5

H 6

7 H

H 9

10 H

H 12

H 15

H 16

H 19

H 20

H 23

H 13H 17H 21

H 8

H 18 H 14

11 H

C 10

C 11

28 H

H 26

27 H

H 24

H 25

H 22

1 H H 3

H 2

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.240795 C2 -0.157575 C3 -0.014628 C4 -0.046227 

C5 -0.017992 C6 0.012018 C7 -0.008337 C8 -0.032087 

C9 0.000606 C10 0.025916 C11 -0.067850 C12 -0.248655 

C13 -0.157993 C14 0.047381 C15 0.180087 C16 -0.225056 

C17 -0.154507 C18 -0.161377 C19 -0.235725 C20 0.106562 

C21 -0.204103 O1 -0.597671 O2 -0.248518 H1 0.064271 

H2 0.064271 H3 0.064271 H4 0.162463 H5 0.146445 

H6 0.152121 H7 0.172945 H8 0.174921 H9 0.155076 

H10 0.166210 H11 0.447658 H12 0.040396 H13 0.040396 

H14 0.006656 H15 0.006656 H16 0.013450 H17 0.013450 

H18 0.006018 H19 0.006018 H20 0.005784 H21 0.005784 

H22 0.005276 H23 0.005276 H24 0.000536 H25 0.000536 

H26 0.012683 H27 0.012683 H28 0.012683   

 

 

PT91 partial atomic charges 

 2
C

C
 3

10 C

C
 11

C 12

1 C
 2
O

 13
C

14 C

15 C

C 16

C 17

18 C

Cl 1O 1

C 4

C 5

C 6

C 7

C 8

C 9

H 1

H 2

H 3

4 H

H 6

17 H

H 7

H 10

H 12

H 14

H 16

21 H

H 19

20 H H 8H 11H 15

H 5

H 13 H 9

18 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.263299 C2 -0.318851 C3 -0.004596 C4 -0.038783 

C5 0.020501 C6 -0.009081 C7 -0.010164 C8 0.054551 

C9 -0.042670 C10 -0.199367 C11 -0.200547 C12 0.184665 

C13 0.292876 C14 -0.191376 C15 -0.166094 C16 -0.190899 

C17 -0.086354 C18 -0.022094 O1 -0.548482 O2 -0.294294 

Cl1 -0.119188 H1 0.140273 H2 0.151520 H3 0.163964 

H4 0.137692 H5 0.168835 H6 0.157041 H7 0.041508 

H8 0.041508 H9 0.012043 H10 0.012043 H11 0.000754 

H12 0.000754 H13 0.001131 H14 0.001131 H15 -0.014078 

H16 -0.014078 H17 0.170982 H18 0.427894 H19 0.008678 

H20 0.008678 H21 0.008678     
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PT92 partial atomic charges 

 1
C

C
 2

3 C

C
 4

C 5

6 C
 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

Br 1O 2

C 13

C 14

C 15

C 16

C 17

C 18

H 7

H 6

H 5

4 H

H 2

1 H

H 10

H 11

H 14

H 15

H 18

21 H

H 19

20 H H 9H 13H 17

H 3

H 16 H 12

8 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.272048 C2 -0.021360 C3 -0.191209 C4 -0.179507 

C5 0.121524 C6 0.239883 C7 0.272739 C8 -0.152979 

C9 -0.184872 C10 -0.155948 C11 -0.072072 C12 -0.107639 

C13 -0.036432 C14 0.028997 C15 -0.004680 C16 -0.010591 

C17 0.056060 C18 -0.043943 O1 -0.216836 O2 -0.554134 

Br1 -0.091016 H1 0.157112 H2 0.153929 H3 0.157876 

H4 0.132010 H5 0.163768 H6 0.140505 H7 0.138119 

H8 0.436221 H9 0.040829 H10 0.040829 H11 0.009003 

H12 0.009003 H13 -0.000839 H14 -0.000839 H15 0.000284 

H16 0.000284 H17 -0.014184 H18 -0.014184 H19 0.008780 

H20 0.008780 H21 0.008780     

 

 

 

 

PT119 partial atomic charges 

 

 2
C

C
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C
 11

C 12

1 C
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O
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C

14 C

15 C

C 16

C 17

18 C

C 19O 1

C 4

C 5

C 6

C 7

C 8

C 9

H 1

H 2

H 3

4 H

H 6

17 H

H 7

H 10

H 12

H 14

H 16

21 H

H 19

20 H H 8H 11H 15

H 5

H 13 H 9

18 H

N 1

 
 
Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 0.238774 C2 -0.269914 C3 0.020846 C4 -0.103698 

C5 0.007662 C6 0.000630 C7 -0.021632 C8 0.055081 

C9 -0.034178 C10 -0.198218 C11 -0.220266 C12 0.197522 

C13 0.234682 C14 -0.218646 C15 -0.119037 C16 -0.171974 

C17 -0.172551 C18 0.018429 C19 0.320513 O1 -0.555479 

O2 -0.257935 N1 -0.468208 H1 0.182316 H2 0.148230 

H3 0.158097 H4 0.159798 H5 0.175534 H6 0.149310 

H7 0.060149 H8 0.060149 H9 0.012045 H10 0.012045 

H11 0.007322 H12 0.007322 H13 0.003016 H14 0.003016 

H15 -0.013893 H16 -0.013893 H17 0.155038 H18 0.433582 

H19 0.006138 H20 0.006138 H21 0.006138   
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PT155 partial atomic charges 

 1
C

C
 2  1

N

C 3

 4
C

C
 5

 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

C 13O 2

C 14

C 15

C 16

C 17

C 18

C 19

H 8

 2
N

H 7

6 H

6 C

1 H

H 15

H 16

H 19

H 20

H 23

26 H

H 24

25 H H 14H 18H 22

H 21 H 17

11 H H 9

H 10

H 13

H 12

H 4
3 H

H 5

H 2

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.438965 C2 0.053087 C3 -0.207546 C4 0.026918 

C5 0.628641 C6 -0.133660 C7 0.171512 C8 -0.260329 

C9 -0.206477 C10 0.290422 C11 -0.303745 C12 0.055573 

C13 -0.125502 C14 -0.009664 C15 -0.004296 C16 -0.020813 

C17 -0.002104 C18 0.032576 C19 -0.136394 N1 0.019303 

N2 -0.908259 O1 -0.284312 O2 -0.601764 H1 0.184029 

H2 0.230152 H3 0.083804 H4 0.083804 H5 0.083804 

H6 0.208299 H7 0.157432 H8 0.172183 H9 0.045560 

H10 0.045560 H11 0.045560 H12 0.378067 H13 0.378067 

H14 0.048581 H15 0.048581 H16 0.015768 H17 0.015768 

H18 0.002572 H19 0.002572 H20 0.006981 H21 0.006981 

H22 0.014048 H23 0.014048 H24 0.031192 H25 0.031192 

H26 0.031192       

 

 

PT162 partial charges 

 1
C

C
 2

3 C

C
 4

C 5

6 C
 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

C 13O 2

C 14

C 15

C 16

H 7

H 6

H 5

4 H

H 2

1 H

H 13

H 14

H 12

H 3

H 15

11 H H 810 H

H 9

21 C
 20
C

C
 19

18 C

C 17

H 20

19 H

18 H

H 17

H 16

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.241594 C2 -0.016797 C3 -0.187413 C4 -0.222738 

C5 0.183975 C6 0.229272 C7 0.191402 C8 -0.172167 

C9 -0.194219 C10 -0.176389 C11 -0.206289 C12 0.092179 

C13 -0.180069 C14 0.008306 C15 -0.028610 C16 -0.000242 

C17 -0.136522 C18 -0.17531 C19 -0.103650 C20 -0.175317 

C21 -0.136522 O1 -0.269172 O2 -0.558044 H1 0.152014 

H2 0.147673 H3 0.166923 H4 0.139061 H5 0.158347 

H6 0.144587 H7 0.148949 H8 0.058580 H9 0.058580 

H10 0.058580 H11 0.431523 H12 0.027243 H13 0.027243 

H14 0.037373 H15 0.037373 H16 0.135539 H17 0.141943 

H18 0.126925 H19 0.141943 H20 0.135539   
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PT163 partial charges 

 1
C

C
 2

3 C

C
 4

C 5

6 C
 1
O

 7
C

8 C

9 C

C 10

C 11

12 C

C 13O 2

C 14

H 7

H 6

H 5

4 H

H 2

1 H

H 13

H 12

H 3

11 H H 810 H

H 9

N 1

 16
C

15 C

3 N
N
 2

C
 17

C 18

C 19

20 C

21 C

C 22

H 14

H 15

H 16

17 H

18 H

19 H

 

Atom name Partial charges Atom name Partial charges Atom name Partial charges Atom name Partial charges 

C1 -0.254089 C2 0.010275 C3 -0.232043 C4 -0.186847 

C5 0.065180 C6 0.293665 C7 0.168604 C8 -0.180610 

C9 -0.187078 C10 -0.155166 C11 -0.215591 C12 0.090623 

C13 -0.200415 C14 -0.024151 C15 0.386267 C16 -0.440644 

C17 -0.115933 C18 -0.076475 C19 -0.146492 C20 -0.143830 

C21 -0.146492 C22 -0.076475 N1 0.407390 N2 -0.356124 

N3 -0.247600 O1 -0.239238 O2 -0.584944 H1 0.186235 

H2 0.187292 H3 0.183086 H4 0.154768 H5 0.161491 

H6 0.150046 H7 0.157123 H8 0.066447 H9 0.066447 

H10 0.066447 H11 0.428407 H12 0.074335 H13 0.074335 

H14 0.217408 H15 0.102391 H16 0.136819 H17 0.135947 

H18 0.136819 H19 0.102391     
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