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Abstract of the Dissertation 

Improved Generalized Born Solvent Model Parameters  

for Protein and Nucleic Acid Simulations 

by 

Hai Minh Nguyen 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2014 

 

Generalized Born solvent model offers inexpensive approach for solvation energy calculation as 

compared to explicit solvent and Poisson-Boltzmann (PB) method. Thanks to its speed, GB 

models have been widely used in molecular dynamics (MD) simulations. However the speed 

comes with tradeoffs. Literatures have pointed out the weaknesses of GB models in inaccurately 

calculating solvation energy that leads to helical bias in protein simulation or unstable 

DNA/RNA duplex in nucleic acid simulation. Here we introduced the reparameterization of the 

recently developed GB-Neck model to improve its accuracy. Compared to other pairwise GB 

models (e.g. GB-OBC and GB-Neck) the new GB models have better agreement to very accurate 

(but slow) PB method in terms of reproducing solvation energies for a variety of systems from 

protein to nucleic acid. For the protein, secondary structure preferences are in much better 

agreement with explicit solvent simulations. We also obtain near-quantitative reproduction of 

experimental structure and thermal stability profiles for several model peptides. Moreover the 

model is able to reproduce the folding of microsecond to millisecond time scale folding of a 

series of larger proteins. For the nucleic acid, simulations maintain stable trajectories for various 

DNA and RNA duplexes through MD simulations and also correctly fold DNA/RNA hairpin 

from extended conformation.  
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Chapter 1. Introduction 

 

 

 

 

 

1.1 Implicit solvent 

To successfully mimic experiment in Molecular Dynamics (MD) simulations, one must 

accurately include the solvent effect. While an explicit solvent, which represents discreet solvent 

molecules, arguably is considered an adequately accurate model, this approach is accompanied 

by expensive computational costs due to the significantly high degree of freedom. In a case 

where more conformational sampling is needed, implicit solvents would provide an excellent 

alternation.  

Implicit solvents  (especially Generalized Born solvent models) offer several advantages 

when directly calculating solvation energy, such as: (1) a fast rate of speed in calculating 

solvation energy for small to medium-sized systems; (2) a low viscosity which makes sampling 

more efficient;1 (3) a friendliness to enhanced sampling methods such as the replica exchange 

molecular dynamics (REMD) method;2 (4) an excellent increase in speed when implemented in 

GPU-based Molecular Dynamics code;3 and (5) a high level of efficiency when implemented in 

parallel MD.4 Implicit solvent models are used extensively in various applications, such as when 

studying protein folding1a, 5and the large-scale motions of protein,6 designing protein,7 and 

developing new force fields.8  

In an implicit solvent model, the solvation energy is directly calculated. This energy is 

required to insert a solute from a vacuum into a solvent environment. Solvation energy is 

commonly decomposed by the sum of polar and nonpolar energy: ΔGsolvation = ΔGpolar + ΔGnp. 

Nonpolar energy is the energy required to insert a non-charge system from a vacuum to a 

solvent, while polar energy is the energy required to turn on the charge in the solvent (figure 

1.1).  
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Figure 1.1 Decomposition of solvation energy to polar and non-polar terms. Non-polar energy is 
further decomposed to VDW and cavity terms. Figure was reproduced from Levy et al.9  
 

1.1.1 Nonpolar model 
Nonpolar energy is commonly approximated by ΔGnp = σ*A, where σ is the surface 

tension coefficient and the A term is the solute surface area. The surface tension coefficient is 

generally given a range of 0.005 to 0.138 kcal/(mol*Å2), based on different definitions of the 

solute/solvent boundary (VDW, MS, or solvent assessable surface area) or different experimental 

conditions.10 Since this coefficient is small, the resulting nonpolar force calculated from the 

nonpolar energy is usually much smaller than that which is calculated from polar energy.11 This 

nonpolar term, as a result, tends to be neglected in MD simulations because it slows down the 

energy calculation.  

The simple nonpolar energy approximation outlined above has been shown to 

overestimate the pairwise nonpolar interaction.12 To further decompose the cavity and VDW 

term9 (eq. 1.1) (figure 1.1): 

ΔGnp = ΔGcavity + ΔGvdw (1.1) 

Here, ΔGcavity (=σ*A) is free energy that can be used to create the solvent cavity when 

inserting the solute from the vacuum into the solvent, while ΔGvdw is the free energy measuring 

the solute–solvent VDW dispersion interaction. The limitation of this current simple 
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approximation of the nonpolar process is likely a lack of ΔGvdw
 leading to a more favorable 

nonpolar interaction in the solution over the nonpolar interaction between the solute and the 

solvent.12  

Nonpolar energy can also be added to another correction term, pV.13: ΔGnp = pV + σA + 

ΔGvdw  (1.2), where V and p are solute volume and volume parameter, respectively. Other terms 

have already been described. However, this new equation for the calculation of nonpolar energy 

has not been broadly tested in MD simulations.  

1.1.2 Generalized Born theory 
Since polar energy dominates nonpolar energy in total solvation energy, much effort has 

been dedicated to developing a more accurate polar model. Arguably, one can achieve highly 

accurate polar energy by solving the Poison Boltzmann (PB) Equation: 

 

 [ ( )  ( ⃗)]      ( )  (1.3) 

 

where  ( )  ( ⃗)  ( ) are the position-dependent dielectric constant, electrostatic potential, and 

charge distribution, respectively. The accuracy of the PB method comes with a trade-off, 

however, which is slow speed.14  

An alternative and popular approach is the Generalized Born (GB) model. The GB model 

approximates polar solvation energy by summing all of the pairwise interaction energies for all 

of the atoms (equation 1.4 introduced by Still et al.15):  
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where (qi, qj) and rij are partial charges and the distance between atoms i and j, respectively.  The 

value for fij
GB is commonly given by equation 1.5, although there is also an alternative form.16 
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Here, Ri and Rj are the so-called effective radii of atoms i and j. These effective radii represent 

the degree of burial of the atoms inside the solute. The key to success with the GB model is to 

get the effective radii to be close to ‗perfect‘ radii,16 which are obtained from the PB method by 

calculating the self-energy when only turning on a partial charge in the interested atom: 
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1.1.2.1 Functional form of effective radii 

Different GB versions have different ways of calculating effective radii; however, they 

can be grouped into three categories: Coulomb Field Approximation (CFA)-based models (or R4 

model),17 CFA-correction models,18 and R6 models.17, 19 The CFA-based model makes a rough 

assumption that the electric field of a point charge is not affected by the electric field of the 

solute. From this assumption, the inverse of the effective radii is given by the following 

equation: 
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where   is the intrinsic radius of atom i. The variable r is a vector originating at the center of 

atom i. The 3D integral is calculated in the region inside the solute but excluding the volume of 

atom i. The CFA is exact for the charge at the center of a perfect sphere. However, when the 

charge is off-center or the molecule is not spherical, this approximation overestimates the 

effective radii.17, 19  

The effective radii equation was later generalized by an RN model (where N is an integer): 17, 19 
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Since CFA-based model has limitations, Lee et al.18 introduced a correction term, α5 (N=5) to α4 

(named GBMV model),18 and later linearly combined α4 (N=4) and α7 (n=7) to form a more 

accurate GBMV2 model: 20 
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An alternative equation for the effective radii can be achieved by using N=6 (the R6 model): 
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Mongan et al.17 has shown that the CFA-based correction model (GBMV2) is actually a special 

case of the R6 model. The performances of R6 and GBMV2 relative to the PB calculation are 

similar when the effective radii are numerically derived.17 Summary of selected GB models is 

shown in table 1.1. 

 

Table 1.1 Selected GB models in the popular simulation packages AMBER and CHARMM 
 

GB model Year Programs Calculation method 
Solute/solvent 

boundary Category 
GB-HCT21 1995 AMBER22 Analytical pairwise VDW CFA 
GB-OBC23 2004 AMBER22 Analytical pairwise VDW CFA 

GB-Neck24 2007 AMBER22 Analytical pairwise 
VDW + "Neck" 

correction CFA 
GBMV220 2003 CHARMM25 Numerical integration MS CFA correction 

GBSW26 2003 CHARMM25 Numerical integration 
VDW + smooth 

boundary CFA correction 

R627 2013 n/a 
Numerical integration 

Analytical approximation 
MS 

VDW R6 
 

 Although the CFA-based model overestimates the effective radii, it is much easier to 

derive the analytical approximation for equation 1.7, either by the pairwise approximation 

approach introduced by Hawkins et al.21 or Gallicchio  et al.28 The rigorous parameter fitting 

introduced fortuitous error cancellation that made GB effective radii and GB solvation energies 

match more closely to the PB calculation.28-29 This approach also made it easier to calculate the 

derivative of the energy.  Thus, its models have been widely used in MD simulations. The 

analytical form of the R6 model is still in developing-process. Its performance (as compared to 

the PB model) was only tested for small systems,27 and there are no other reports of its 

implementation in MD simulations. 
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1.1.2.2 Generalized Born dielectric boundary. 

  An exact definition of the solute/solvent boundary has yet to be developed. Traditionally 

the PB model uses molecular surface (MS) to define this boundary. This MS is generated by 

rolling the solvent molecule with a given radius over the solute molecule (figure 1.2). One 

approach used by the GB model is to use this MS in a way similar in physical meaning to that of 

the PB method.18, 20 However, there is no mathematical form for MS; the calculation for effective 

radii is expensive.14 Alternatively, a less expensive (and less accurate) approach is to use the 

VDW surface (figure 1.2). The VDW-based approach is commonly used for analytical solutions 

for an effective radius.21, 23, 28  

 Once either the MD or VDW boundary is defined, there is still an arbitrary choice 

regarding atomic radii to be made.  This choice also controls the accuracy of a given GB model 

as compared to an explicit solvation calculation.30  

 

 

 
Figure 1.2. Molecular surface (MS) and Van der Waals (VDW) surface. MS is generated by 
rolling the solvent probe along VDW surface. The figure is reproduced from 
http://www.ccp4.ac.uk/newsletters/newsletter38/03_surfarea.html 

1.1.2.3 Analytical model for MD simulation. 

  Due to the advantages listed above, GB models are of interest for use in MD simulations. 

Below is an introduction to several popular approaches to approximating effective radii.  

CFA-based GB-HCT model approach.21  

The integral for each atom i in eq.1.7 is approximated by the pairwise sum of all integrals 

over the spherical volumes of each atom      

http://www.ccp4.ac.uk/newsletters/newsletter38/03_surfarea.html
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where   is the intrinsic radius of atom i. The value for r is a vector having its origin at the 

center of atom i. The individual integral can easily be approximated if using the VDW volume 

for each atom.21 To avoid an overlap of the volumes of all atoms j that lead to an overestimation 

of the integral sum, a variable called scaling factor Si was introduced to rescale the intrinsic 

radius:         .  The Si value depends upon atom type, and its value is traditionally smaller 

than 1.0. However, it could be treated as an adjustable parameter (>1.0) to compensate for the 

non-perfection of a given GB model.24 

 The VDW-based approach helps to achieve a faster, more effective radius calculation; 

however, this approach introduces severe errors. It does not account for the interstitial space 

between atomic spheres. In the MS-based approach, which is more physically correct, this region 

is treated as a low dielectric area; conversely, the VDW-based approach considers it a high 

dielectric area. This error leads to the underestimation of the effective radii of deeply buried 

atoms in the GB-HCT model, which in turn results in biasing the more compacted structures in 

the MD simulation.31 There have been several efforts to correct this limitation. Firstly, an 

adjustable parameter set [α,ß,γ] was introduced to rescale up the effective radii of buried atoms 

while retaining similar effective radius values for the surface atoms (GB-OBC model).23 The 

integral over interstitial regions are later (GB-Neck model) added to the VDW volume to make 

the solute/solvent boundary closer to that of the MS surface.24  

 

CFA correction-based GBSW approach.  

Another example is the effective radius calculation in the GBSW model,26 which is an 

analytical form of the GBMV2 model (CFA correction-based approach). Instead of using the 

VDW surface to define the solute/solvent boundary, GBSW uses a smooth volume exclusion 

function.26 This function was introduced to avoid the numerical instability in calculating the 

solvation force at the solute/solvent boundary.20 Although GBSW was developed from the more 

accurate GB model, its performance relative to the PB calculation approach is no better than the 

GB-OBC model (which is based on the CFA approach).14 This implies that the performance of a 

given analytical GB model is strongly affected by its analytical form and parameter-fitting 

process. 
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1.1.2.4 GB limitation in MD simulations.  

Since the GB model itself approximates the PB solution, it has a generic error (as do 

other implicit solvent models, including the PB method). The error increases when the analytical 

forms are used, rather than the numerical form.  

 It lacks an explicit solvent molecule. This might lead to the instability of some proteins if 

localized water plays an important role.  

 It lacks an explicit ion such as Mg2+ which is required for the stability of several nucleic 

acid motifs such as ribosomal RNA, riboswitch, and others.32  

Beside the generic errors, some fast analytical forms such as GB-HCT and GB-OBC strongly 

bias the helical structure, due to their limitations in term of effective radii calculation.31, 33 In 

these models, the effective radii of deeply buried atoms are underestimated.23 The GB MD 

simulations, therefore, tend to favor a more compacted structure. The GB-Neck model, which 

introduces interstitial region correction to GB-HCT and GB-OBC, does not like any native 

structures, whether beta sheet or helix. This is likely due to the systematical overestimation of 

the effective radii.24, 29 GB models have also been reported to have too strong a salt bridge 

interaction, as compared to explicit solvent simulation.30b, 34  

 Although there is a significant number of publications using GB models for protein, this 

is not the case for nucleic acid simulation.35 Most GB models tend to destabilize the DNA/RNA 

duplex.36 Some GB models, such as GB-HCT21 or GB-OBC,23 can maintain a stable duplex in 

MD simulation36 but introduce a strong helical bias in protein simulation.31 This could be 

problematic if one wants to simulate the protein and nucleic acid complex.  

1.2 Protein folding 

Understanding protein folding has been challenge for 50 years.37 Detailed knowledge of 

protein folding process would help better understand the relationship between structure and 

function; understanding misfolding process38 which is implied relating to protein misfolding 

disease such as Alzheimer, Parkinson diseases or help designing protein with new function or 

new scaffold.  

Molecular Dynamics (MD) simulations have been a powerful tool to explore atomic 

motion of protein. However, their strengths are limited by the time scale they can reach. For 

instance, the longest MD simulation before 2008 is 10 µs, utilizing ~90 days of supercomputer 
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time,39 while protein folding time is in the range of µs40 to millisecond38, 41 or even second time 

scale.37a, 42 There have been great efforts to improve the speed or the scaling of MD simulation. 

First, a special-purpose supercomputer (Anton)43 was designed for MD simulation, from which 

few tens of µs could be generated per day. Another approach is to perform thousands of short 

MD simulations by using either GPU cluster or distributed computers (Folding@Home)44 and 

then using Markov State Model (MSM) to build the kinetics and thermodynamics for the protein 

systems.41, 45 Either approaches are successful charactering the folding of millisecond protein 

folding such as NTL9,41, 46 Ubiquitin47  or 12 different protein-fold motifs studied by Shaw et 

al.46 

 Two approaches above are powerful for studying protein folding, however they are not 

reachable to most research group. Is there an alternative way to study with much less expensive 

cost? Implicit solvent model, especially the pairwise Generalized Born solvent (e.g. GB-OBC23), 

in combination with GPU cards offer excellent speed.48 Thanks to the low viscosity, GB models 

can significantly accelerate large scale movement.1a 

 However the speed of sampling in GB simulation comes with trade-off accuracy. As 

discussed above, some fast models such as GB-HCT or GB-OBC favors alpha helix31 or 

overestimate ion interaction30b compared to explicit solvent simulations. Improving accuracy of 

those models is then needed for broader application in protein folding.  

1.3 Overall goal of this dissertation 

GB models‘ extensive number of applications (as listed in previous section) and their 

sampling advantages motivated me to improve their accuracy. The target GB model is the fast 

analytical form GB-Neck model used in MD simulation.24 This model is the later version of the 

GB-HCT21 and GB-OBC23 (CFA-approach category) models which have been used for protein 

and nucleic acid simulation for 20 years, due to their rapid speed in calculating solvation 

energies and atomic forces. GB-Neck was shown to be more theoretically accurate than its 

ancestors;17, 24 however, it tends to destabilize the native protein49 or nucleic acid24 in MD 

simulation.  

The overall goal in this dissertation is to fix/reduce the current limitations of fast GB 

models. Specifically, a newly developed GB model should have better alpha/beta balance 

(compared to the older models) and have better salt bridge profile in protein simulation if using 
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popular explicit water simulation as benchmark. Additionally, the model should be applied to 

nucleic acid simulation. 

I hypothesize that the original GB-Neck parameters have not yet been properly fitted to 

higher theory level PB method, resulting in its poor performance. This research is then organized 

as follows: first, I introduce the refitting procedure for protein simulation (Chapter 2), I then 

introduce the application of this model in protein folding (Chapter 3) and I introduce the 

parameter development for nucleic simulation (Chapter 4). The final chapter (Chapter 5) 

discusses some potential directions. 
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Chapter 2. Improved Generalized Born Solvent Model Parameters for Protein Simulations 
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Abstract: The generalized Born (GB) model is one of the fastest implicit solvent models and it 

has become widely adopted for Molecular Dynamics (MD) simulations. This speed comes with 

tradeoffs, and many reports in the literature have pointed out weaknesses with GB models. 

Because the quality of a GB model is heavily affected by empirical parameters used in 

calculating solvation energy, in this work we have refit these parameters for GB-Neck, a recently 

developed GB model, in order to improve the accuracy of both the solvation energy and effective 

radii calculations. The data sets used for fitting are significantly larger than those used in the 

past. Comparing to other pairwise GB models like GB-OBC and the original GB-Neck, the new 

GB model (GB-Neck2) has better agreement to Poisson-Boltzmann (PB) in terms of reproducing 

solvation energies for a variety of systems ranging from peptides to proteins. Secondary structure 

preferences are also in much better agreement with those obtained from explicit solvent MD 

simulations. We also obtain near-quantitative reproduction of experimental structure and thermal 

stability profiles for several model peptides with varying secondary structure motifs. Extension 

to non-protein systems will be explored in the future. 
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2.1 Introduction 

In order to accurately describe the properties of biomolecules in aqueous environment, 

solvent effects must be included in the Molecular Dynamics (MD) simulation. Solvation can be 

explicitly represented as atomistic solvent molecules or it can be implicitly represented by a 

model that calculates solvation effects using a continuum representation. Although implicit 

solvent is less realistic than explicit solvent model, it is still widely used50 due to low 

computational cost, and many models directly provide solvation free energies as compared to the 

potential energies provided by explicit models. This has led to wide use in the drug discovery 

field of implicit solvent models in post-processing trajectories originally performed in explicit 

solvent.51 In addition, the low viscosity in implicit solvent simulations can accelerate the rate of 

conformational sampling (such as protein folding) compared to explicit solvent.1a  

 Solvation free energy can be decomposed into two terms for the polar and nonpolar 

contributions.  The present work focuses solely on the polar contribution. The nonpolar term is 

often approximated by the equation ΔGnp=γA where γ is the surface tension coefficient and A is 

the total solvent accessible area. The nonpolar term is frequently omitted in simulations due to 

the cost of calculating the surface area and its derivatives, and the fact that the magnitude of this 

term is typically much smaller than the polar contribution. Moreover, a simple solvent accessible 

surface area (SASA) based approximation that is commonly used to calculate the nonpolar term 

has several limitations.9, 12-13, 52 Chen et al.12 have shown that this nonpolar model tended to 

overestimate nonpolar interactions that shifted ensembles to non-native states. Despite these 

limitations, SASA-based approaches are widely used and available in the Amber program22b, 

thus we evaluate the impact of their inclusion during simulations using our improved GB model.  

Among all implicit solvent models, the Poisson- Boltzmann (PB) method53 is considered 

the most accurate model for calculating polar solvation energy in MD. However, the 

computational cost of solving the PB equation and its derivatives, particularly on massively 

parallel computers, is high enough that it is not widely used in MD simulations.14  Instead, most 

MD simulations use the GB equation (eq. 1), as was first introduced by Still et al.15 and 

subsequently modified by other groups.  

,

1 1 1
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out

i j
GB GB

i jin ij ij

q q
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 
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  ; qi, qj are the partial charges of atom i and j; rij is the distance 

between atom i and j; εin and εout are interior and exterior dielectric constants respectively.  Ri and 

Rj are the effective Born radii. It has been shown that accurate calculation of effective radii (or 

using ‗perfect‘ radii calculated from PB method)  is a key to close agreement between GB and 

PB solvation energies.16 The effective radius is normally calculated by eq. 2  
1 1

i i iR I    (eq. 2) 

where Ii is Coulomb integral derived from Coulomb Field Approximation (CFA) 

3
4,

1 1 r 
4 ri

i r
I d

  
  (eq. 3) 

ρi is the intrinsic radius of the atom i and integral Ii is calculated over the volume Ω outside 

atom i but inside the molecule. Ii can be calculated numerically15 or analytically by using the 

pair-wise descreening approximation (PDA) method introduced by Hawkins et al. (the GB-HCT 

model).21 Although GB-HCT is less computationally expensive than numerical methods,14 it 

tends to underestimate the effective radii of buried atoms.54 A modification based on GB-HCT 

was proposed by Onufriev et al.23 (GB-OBC), in which effective radii for buried atoms are 

scaled up by an adjustable empirical parameter [α, β, γ] set (eq. 4a).  

1 1 1 2 3tanh( )i iR            (eq. 4a) 

where offseti i   , iI   (eq. 4b)  

 Importantly, these analytical models (GB-HCT and GB-OBC) use the van der Waals 

(VDW) surface to define the boundary between solvent and solute, instead of using more 

realistic but much more computationally demanding molecular surface (MS). Mongan et al.24 

introduced a ―neck‖ correction to make the space defined by the VDW boundary closer to that 

defined by MS boundary, particularly at small interatomic distances where finite size explicit 

water is typically excluded (GB-Neck). (figure 2.0.1) 

             ∫
 

  
    

    
 (5) 

where Ivdw is the integral  Ii  in eq. 3, using VDW volume for volume Ω . IMS is then applied as 

I in eq. 4b.  
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Figure 2.0.1. ―Neck‖ correction (shaded) for GB-OBC model23 with a simple two-atom system. 
GB-OBC only uses VDW volumes from atom 1 and 2 for effective radii calculation. The figure 
is reproduced from Mongan et al.24  

  

 All 3 of these PDA-based GB models have some advantages such as low computational 

cost,14, 24 and in particular efficient parallel scaling compared to explicit solvent models.4 These 

GB models have also been ported to GPU-based MD codes which accelerate MD up to 700 times 

faster than simulation on conventional CPUs.3 The advantage of speed, however, comes with less 

accuracy in these GB models. GB-HCT and GB-OBC have apparent limitations such as high 

alpha helical content31, 33-34, 49, 55 and overly strong ion interactions compared to TIP3P explicit 

solvent simulations.30b, 34  Although GB-Neck introduced corrections to GB-OBC, this is not 

reflected in improved solvation energy accuracy.24 Additionally, Dill et al.49 and Roe et al.31 have 

shown that GB-Neck tends to destabilize native peptide/protein structures, likely due to 

imbalance between intramolecular hydrogen bonds and interaction with implicit solvent.  

Our goals for improving the GB model are to give more accurate solvation energy and 

effective radii calculation compared to PB method; to reduce secondary structure and salt bridge 

bias, and to better reproduce experimental structures and thermal stability for small proteins and 

peptides. We hypothesize that at least some of these weaknesses could be improved by more 

rigorous fitting of the many empirical parameters in these models. Since GB-Neck is more 

physically realistic than GB-HCT and GB-OBC, we decided to use it as the base model for our 

parameter refitting. The relatively poor performance of GB-HCT in many studies led us to omit 

it from the present comparisons. 

In the original GB-Neck work,24 8 parameters were optimized by fitting GB solvation 

energies to PB solvation energies for a set of proteins and peptides. The GB-Neck parameters 
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include scaling factors Sx (x=H, C, N, O) that were initially introduced in GB-HCT by Hawkins 

et al.21 for analytically calculating the I integral in eq. 3, the [α, β, γ] set used in eq. 4a that was 

initially introduced in GB-OBC by Onufriev et al,23 and the neck scale factor Sneck introduced by 

Mongan et al.24  These describe properties related to gaps between atom pairs, and are thus likely 

dependent on size of the atoms involved. We therefore expanded the number of parameters from 

8 to 18 (see method section) by making [α, β, γ] atomic number dependent and making offset (eq. 

4b) a free parameter as well. We recognized that the significant increase in the number of free 

parameters in the model necessitated use of much larger training and test sets than used 

previously, and thus much of the present work focuses on development of a large and broad data 

set for training and testing. Summary of parameter set difference between GB-Neck and new 

model is given in table 2.0. 

 

Table 2.0. Parameters for the original GB-Neck and GB-Neck2 models. 
 

GB-Neck GB-Neck2 
SH SH 
SC SC 
SN SN 
SO SO 
offset offset 
Sneck Sneck 
α αH 
β βH 
γ γH 
 αC 
 βC 
 γC 
 αN 
 βN 
 γN 
 αO 
 βO 
 γO 

 

In our training objective function, not only absolute solvation energy but also effective 

radii and relative solvation energy of peptide (or protein) conformations were included. PB 

solvation energies and ‗perfect‘ radii of structures in the training set were used as benchmarks 

for fitting. The new GB-Neck parameter set (GB-Neck2) shows significant improvement in 
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accuracy of calculating solvation energy and effective radii compared to GB-OBC and original 

GB-Neck model for this training set. Importantly, the improvement is clearly transferable to test 

sets having thousands of structures for various proteins and peptides, including molecules not 

used in training.  

The final goal of a GB model is to approximate the results (structure, stability, salt bridge 

profile etc.) obtained from more expensive explicit solvent simulations; thus we performed 

simulations of several peptides in GB-Neck2 as well as in explicit water to test if the improved 

agreement of GB-Neck2 to PB results (solvation energy and effective radii) led to improved 

agreement of structural ensembles compared to those obtained from explicit solvent simulation. 

Overall, the GB-Neck2 model does a much better job in reproducing ensemble data from explicit 

water (such as alpha-helical stability) as compared to GB-OBC and comparable to the original 

GB-Neck, with the exception of propensity to form ion pairs (salt bridges). We found that 

although salt bridges were specifically included in our training by fitting to PB solvation 

energies, they tended to remain too strong in GB-Neck2 when comparing to TIP3P simulation. A 

possible explanation is that PB also has too-strong ion interactions compared to TIP3P, perhaps 

arising from our use of the same set of intrinsic Born radii in our GB and PB calculations for 

consistency.56 Salt bridge strength was thus adjusted in the same strategy as Geney et al.30b and 

Shang et at.56 by empirically adjusting the Born radius of side-chain HN+ of Arg to reproduce salt 

bridge PMF of TIP3P simulation. Unlike those earlier studies, we also adjusted the Born radius 

of side-chain Oε of Glu (and Oδ of Asp) to match PMF profiles of salt bridges and hydrogen 

bonds in TIP3P simulations. This radius modification was sufficient to reproduce the PMF of 

Lys salt bridge formation and we found no need to modify the Born radius of HN+ in Lys.  

We also tested the ability of GB-Neck2 in combination with widely used ff99SB force 

field57 in reproducing experimental structure and thermal stability of different peptides from 

experiment by simulating a hairpin (HP5F)58 system and a mini-protein with alpha, 3-10 and 

polyproline helices and a small hydrophobic core (trp-cage variant tc5b).59 The effect of 

including a nonpolar solvation energy term in GB simulations was also tested. Although the 

agreement of melting temperature between simulation and experiment depends not only on the 

GB model but also on the protein force field, this testing is still valuable to confirm the 

robustness of the combination of specific GB model and force field.  Dill et al.49 evaluated 

various combinations of force fields and GB models for peptide and protein simulations and 
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found that GB-OBC23 with the ff96 force field was the best combination for studying protein 

folding. However, this GB model and this force field both have well-known flaws, and thus it is 

likely that the combination benefits from significant fortuitous error cancelation. In the present 

case, we use the ff99SB protein force field (FF),57 which has been shown by many studies to 

provide excellent results with explicit water.60 We find that this single combined protein FF + 

solvent model is able to quantitatively reproduce the experimental thermal stability behavior of 

two tested peptide models with different secondary structures. Taken together, our results lead us 

to recommend this combination for simulations of peptides and proteins.  

2.2 Materials and Methods 

2.2.1 Training set for parameter fitting 
We first designed test sets of between ~3,500 - 103,000 structures of each protein or 

peptide, and then took a subset of the structures for the training set. The subset was selected in a 

way that gives both training and test set similar absolute solvation energy root-mean-square-

deviation (abs_e) between GB-OBC and PB solvation energies. For example, the Ala10 test set 

had 50000 structures with abs_e of 1.12 kcal/mol between GB-OBC and PB. The Ala10 training 

set had only 413 structures with abs_e of 1.14 kcal/mol. This reassures us that a small number of 

structures could represent a desired quality metric (abs_e in this case) of a larger number of 

structures. The assumption is tested by evaluating the model using the full test set, which was 

impractical during training due to the large number of parameter variations that were tested. An 

overall summary of the training sets and their contributions to the training objective function is 

given in Table 2.1. These sets are discussed in more detail below. 

Roe et al.31 used enhanced sampling Replica Exchange Molecular Dynamics (REMD)2 

simulations of Ala10 peptide to quantify the helical bias in GB-OBC and GB-HCT models. We 

used this system in our test and training sets; the training set Ala10_set_1 has 480 structures 

extracted from Thermodynamic Integration (TI) and REMD trajectories from Roe et al.31  We 

first introduced 50 alpha and 50 hairpin structures from TI trajectories and then added 10 

structures from each of the 20 most populated clusters sampled at 300K in 50 ns REMD using 

TIP3P61 explicit water, as well as single representative structures for the next 180 clusters.  

Okur et al.34b used the peptide sequence RAAE (Arg-Ala-Ala-Glu) to evaluate salt 

bridges in the GB-OBC model. Our RAAE set has 200 structures taken from the 300K trajectory 
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of TIP3P REMD simulation from Okur et al.34b We chose structures uniformly sampling the salt 

bridge distance (Cδ of Arg and Cδ of Glu) ranging from 3.6 Å to 14.5 Å with nearly equal 

interval of 0.05 Å.  

We also added structures for two peptides having different secondary structures: we also 

added β-hairpin (trpzip2, PDB ID: 1LE1)62 and α-helix (3Ai3)63; these also have more 

complicated side chains than Ala10 and RAAE. The trpzip2 set had 413 structures from Okur et 

al.8 Those structure ensembles were chosen from cluster analysis of MD (or REMD) simulation 

trajectories, giving various types of backbone structures from helix, hairpin, PPII, and coil. The 

backbone RMSD for those structures to native trpzip2 is presented in Figure 2.S1. The 3Ai3 set 

had 200 structures of the peptide sequence Ac-YGG-(KAAAA)3-K-NH2, one of the helical 

peptides studied by simulation and NMR in Song et al.63 We chose structures first by clustering 

the first 50ns of 300K trajectory data from GB-HCT REMD simulation of 3Ai363 and then 

picking 200 structures from the 20 most populated clusters (10 structures / cluster).  

Because Ala10, RAAE, trpzip3, 3Ai3 were small peptides, we also added HP36 mini-

protein64 structures to train for structures having a hydrophobic core. These were extracted from 

the first 75 frames of 300K MD simulation in TIP3P from Wickstrom et al.65 (the backbone 

RMSD to X-ray structure (PBD ID: 1YRF66)  is given in Figure 2.S2). 

Structure sets described above were used for training solvation free energy as compared 

to PB data. We also included two structure sets, Ala10_set_2 and HP1113, to train for effective 

Born radii. Ala10_set_2 has 200 Ala10 structures (50 structures for each alpha helix, hairpin, left 

handed helix (―left‖), PPII) which were extracted from trajectories of TI calculations from Roe et 

al.31 We added additional large protein structures to evaluate the effective radii underestimation 

of deeply buried atoms.54 The HP1113 set has 6 large proteins having various secondary 

structure types, with PDB ID codes 1TSU,67  1BDD,68 1UBQ,69 1AEL,70 1FKG,71 3GB172 

(details in Table 2.S0.1). 

 

2.2.2 Test sets for evaluating the new model.  
We designed two test set types. Test set type I (Ala10, trpzip2, 3Ai3, RAAE, HP36 sets) 

had proteins or peptides for which a smaller set of structures were included in the training stage. 

This tests the extension of the model to a broader set of structures (thousands rather than 

hundreds). Test set type II had proteins or peptides for which structures were not included in 
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solvation energy training (tc5b, DPDP, HIV1-PR, Lysozyme), testing the transferability to 

entirely different molecular systems. The large numbers of structures were chosen for testing to 

ensure local variation in structure as well as alternative folds. Summary for the test sets is given 

in Table 2.S0.2 

 

2.2.2.1 Test set type I. Ala10 set has 50000 Ala10 structures taken from 50 ns of 300K 

trajectory of REMD simulation in TIP3P.31 Trpzip2 62 set has ~80000 structures having RMSD 

to native structure ranging from 0.2 to 7.6 Å (Figure 2.S3) which were taken from TIP3P and GB 

simulations.8 The 3Ai3 set had 49000 structures taken from 49ns of 300K trajectory of GB-HCT 

REMD simulation.63 The RAAE set had 50000 structures from 50ns of 300K trajectories of 

TIP3P REMD simulation of RAAE peptide.34b The HP3664 set had 3500 structures extracted 

from the first 35ns (skipping every 10 frames) of TIP3P MD simulation at 300K from 

Wickstrom et al.65 (Figure 2.S4).  

 

2.2.2.2 Test set type II. Test set type II has 4 structure sets representing 4 different protein types, 

which are a helical mini-protein (trp-cage tc5b variant),59 a small peptide having 3-stranded β-

sheet (DPDP),73 a larger, mainly helical protein (lysozyme)74 and a larger protein having mainly 

β-sheet (HIV-1 protease).67 The tc5b set had 103000 structures having backbone RMSD from 0.3 

to 8.0 Å to native TC5b (Figure 2.S5), which were extracted from TIP3P and GB simulation 

ensembles.30b The DPDP set had 50000 structures from 150 ns GB-HCT REMD simulation 

trajectory at 300K.75 HIV-1 PR had 1427 structures having closed, semi-open and wide open 

conformations of HIV-1 PR protein which were extracted from 600 ns trajectory at 300K of 

1TSU 67 in TIP3P (Cα RMSD to closed X-ray structure is given in Figure 2.S6) 76. The lysozyme 

set had 1000 structures taken from first 30 ns of 300K trajectory of TIP3P MD simulation 

(backbone RMSD to experimental native structure (PBD ID: 1IEE74) is given in Figure 2.S7).57  

 

2.2.3 PB calculations and intrinsic radii. All PB calculations were performed using Delphi v2 

and v477 with grid spacing of 0.25 Å and solvent probe of 1.4 Å (different Delphi versions were 

used due to the their availability in computer clusters). Interior and exterior dielectric constants 

of 1.0 and 78.5 respectively were used for solvation energy calculation. Exterior dielectric 

constant of 1000 was used for calculating ‗perfect‘ radii, as suggested by Sigalov et al.78 
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Calculation of ―perfect‘ radii was described by Onufriev et al.16 The original GB-Neck suggested 

use of the bondi radii set,79 however it was shown by Dill et al.49 that this combination tended to 

destabilize protein native structure. Onufriev et al.23 showed that GB-OBC worked quite well 

with mbondi2 radii, consistent with our previous observations with this combination.6, 56 We 

reasoned that GB-Neck was an improvement of GB-OBC model and thus, mbondi2, instead of 

bondi, should be a good starting radii set. For consistency, the same radii were used in GB and 

PB. We therefore used mbondi2 intrinsic Born radii set23 and charge set from ff99SB57 in all PB 

and GB solvation energy calculations. Radii adjustment will be discussed below. 

 

2.2.4 Fitting parameters and procedure 
In the original GB-Neck model,24 Mongan et al. fit only 8 parameters: Sx (x=H, C, N, O), 

[α, β, γ] and Sneck. We refit 18 parameters by allowing Sx, α, β, γ to vary for H, C, N, and O. We 

tried several parameter combinations for Sulfur (S) atom and found that S parameters have 

insignificant effect on correlation between GB and PB solvation energies due to a small number 

of S atoms in protein molecule. Thus, the S parameters were arbitrarily chosen to be the same as 

the ones for Oxygen (O). Sx is a scaling parameter originally introduced by Hawkins et al. in the 

pairwise GB-HCT model21 to avoid double counting of overlapping VDW volume.  Sx was 

conventionally considered to range from 0 to 1, but the search space was extended greater than 1 

in the original GB-Neck paper.24 In our optimization, we also extended the range of Sx to [0.0, 

2.0].  [α, β, γ]x (x=H, C, N, O) are adjustable parameters used in eq. 4a. Onufriev et al.23 and 

Mongan et al.24 used one set of [α, β, γ] for all atoms, but we allowed different elements to adopt 

their own parameter to allow for atomic-size dependence of the interstitial gaps for which these 

parameters empirically correct. We chose [0.0-10.0] as potential range for these parameters. We 

also attempted fitting with one parameter set for all elements like Onufriev et al.23 or Mongan et 

al.24 did, but found no significant improvement in solvation energy calculation compared to GB-

OBC and GB-Neck (data not shown). The offset parameter (eq. 4b)  was originally used by Still 

et al.15 to decrease atomic radii to maximize the agreement between GB and experimental 

solvation energies for a set of small molecules, and it has been used in several GB models such 

as GB-HCT,21 GB-OBC23 and GB-Neck24 as a conventional constant (offset=0.09). In our study, 

we treated offset as an adjustable parameter with possible range of [-0.2, 0.2]. Sneck is the scaling 

factor introduced by Mongan et al.24 to avoid the overlap of neck regions in nearby pairs, and 
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thus reducing the over calculating of neck integral (eq. 5). We kept the original range of [0.0, 

1.0] for Sneck. In summary, the search range of each parameter set is Sx [0.0, 2.0], [αx, βx, γx]   

[0.0, 10.0] (x= H, C, N, O), offset [-0.2, 0.2] and Sneck [0.0, 1.0].  

GB MD simulation biases have been shown to correlate with differences between GB and 

PB solvation energies.31 In this work, we define ―absolute solvation energy root-mean-square-

deviation‖ (abs_e) as RMSD of solvation energies for a set of conformations, where the error is 

the difference between GB and PB energies. ―Relative solvation energy root-mean-square-

deviation‖ (rel_e) was calculated as the RMSD for GB and PB energy differences for all pairs of 

structures. ―Effective radii root-mean-square-deviation‖ (eff_rad_rmsd) is defined as RMSD of 

GB effective Born radii from those calculated using PB (‗perfect‘ radii).16 Typically, only abs_e 

is considered when optimizing GB models.23-24 However, we consider rel_e and eff_rad_rmsd as 

important additional targets. The rel_e is included since it is the relative energy of alternate 

conformations that determines thermodynamic populations, such as those sampled in MD 

simulations. The eff_rad_rmsd is included since Onufriev et al.16 showed that the best agreement 

between GB and PB solvation energy is obtained when using ‗perfect‘ radii from PB calculation 

in GB, later confirmed by Honig et al.55 We set our objective function for training as the sum of 

weighted abs_e, rel_e and eff_rad_rmsd. The objective function is shown in eq. 6, where wi is 

weighting factor and xi is contribution of each component i (each set in Table 2.1). 

_ i i
i

obj funct w x , (6) 

We weighted abs_e, rel_e, and eff_rad_rmsd so that they contributed roughly equally to the 

objective function. We first minimized the objective function with wi = 1 for all contributions 

and calculated how far each contribution value could be decreased from those calculated by GB-

OBC model. The abs_e values for trpzip2, 3Ai3, HP36 decreased a few kcal/mol but the abs_e 

of Ala10_set_1 and RAAE set decreased only ~0.5 kcal/mol. Thus, we used wi = 1 for abs_e of 

trpzip2, 3Ai3 and HP36 sets while used wi = 10 for abs_e of Ala10_set_1 and RAAE set. We set 

other weighting factors in a similar way. Weighting factors for different contributions are 

summarized in Table 2.1. Our choice of weighting factors is not unique and thus others could 

choose different wi.  

 

Table 2.1. abs_e (kcal/mol), rel_e (kcal/mol) and eff_rad_rmsd (Å) to PB results for each 
training set after optimization, compared to GB-OBC and GB-Neck models. w is the weighting 
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factor for each component. The objective function for training is the sum of the weighted 
contributions from each column. 
 

 Ala10_set_1 

abs_e 

w=10 

Ala10_set_1 

rel_e 

w=10 

trpzip2 

abs_e 

w=1 

trpzip2 

rel_e 

w=10 

3Ai3 

abs_e 

w=1 

3Ai3 

rel_e 

w=10 

RAAE 

abs_e 

w=10 

RAAE 

rel_e 

w=10 

 

GB-OBC 

 

1.1 

 

1.6 

 

9.5 

 

4.8 

 

   7.1 

 

4.5 

 

1.5 

 

1.3 

GB-Neck 2.7 2.3 8.3 7.0  10.6 4.1 1.1 1.1 

GB-Neck2 0.8 1.0 2.8 3.9    3.7 3.7 0.9 1.2 

 

 HP36 

abs_e 

w=1 

HP36 

rel_e 

w=10 

HP1113 

eff_rad_rmsd 

w=50 

Ala10_set_2 

eff_rad_rmsd 

w=250 

obj_funct 

 

 

 

GB-OBC 

 

21.6 

 

6.5 

 

1.8 

 

0.16 

 

381.2 

GB-Neck 28.3 5.1 2.3 0.19 444.7 

GB-Neck2 4.3 4.8 1.5 0.10 273.8 

 

The search space for fitting 18 parameters is vast, thus we did not expect to locate the 

global minimum for our objective function. Our goal instead is to have a parameter set showing 

significant improvement in solvation energy and effective radii calculation relative to PB when 

comparing to GB-OBC and original GB-Neck models, and one that simultaneously accounts for 

many aspects of the training data. In the beginning of this project, we used the local search  

method UOBYQA80. UOBYQA is an unconstrained minimization method that does not require 

objective function derivatives, and allows optimization with large number of variables. It took 

about 1 minute for the objective function calculation and we spent about 20 days (~30000 

function evaluations) for each optimization.  Because of the computational expense, we 

performed only 5 optimization runs, each run starting with an initial random guess. We then 

performed further extensive search of combinations of various parameter subsets by using a 

parallel Genetic Algorithm (GA)81 (code implemented by Metcalfe et al.).82 The GA is one of the 

most popular global search methods83 and particularly well suited for this task because it is likely 
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that some of the parameters are weakly coupled, and thus mating of genes with independent 

improvements located in different parameters could be productive. GA options such as mutation 

and crossover rate were set to default values 82. Each optimization run had population size of 120 

and the objective function was allowed to be evaluated up to 2500 generations. We performed 31 

runs in total. Initial populations of most runs were randomly created. Parameters of GB-OBC, 

GB-Neck and previous UOBYQA results were also included in some runs as initial guesses. 
  

2.2.5 Structures used for testing the new parameters in MD simulations 
All of the fitting described above was performed relative to PB solvation energy 

calculations. This is consistent since both lack description of the hydrophobic and van der Waals 

components of the aqueous solvation, and thus by design our fitting did not modify the 

electrostatic component of GB to empirically correct for these missing terms as it would if we fit 

directly to reproduce data from explicit solvent simulations, which would likely lead to reduced 

transferability. However, we hypothesized that improved agreement with PB would also result in 

improved agreement with explicit water.31 To test this hypothesis, we compared simulations 

generated with the re-optimized GB-Neck parameter set (named GB-Neck2) with those from 

TIP3P explicit water for several systems. 

 

2.2.5.1 Ser-Ala-Ala-Glu Model Peptide (SAAE). SAAE was used to compare hydrogen bond 

(Hγ of Ser and Oε of Glu) PMFs between GB and TIP3P models. The potential of mean force for 

hydrogen bond formation was a useful independent measure of model quality, but was also 

performed because one of our intermediate models showed much too high propensity of forming 

such interactions as compared to MD in explicit water. Since the solvation energy profile 

matched that in PB using the same intrinsic Born radii (data not shown), we built on our previous 

work30b, 56 that showed adjusting intrinsic radii could improve fit to explicit solvent data. 

Additionally, the strong salt bridge interaction between side chains of Asp (or Glu) and Arg 

could be adjusted by modifying the radius of either the HN+(Arg) or the carboxyl oxygen34b. 

Thus, the SAAE model was built to compare the H-bond PMFs of GB models to TIP3P model 

and allow adjustment the radii of carboxyl oxygen atoms independent from subsequent 

adjustment of HN+ to refine salt bridge strength.  
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We performed 3 REMD simulations using TIP3P, GB-OBC, GB-Neck and 2 REMD 

simulations for GB-Neck2 with original and modified carboxyl oxygen intrinsic radius (1.5 and 

1.4 Å respectively). GB-OBC and GB-Neck runs were used as controls. SAAE was solvated in a 

truncated octahedron box with 8 Å buffer by using 459 TIP3P water molecules. TIP3P REMD 

simulation was performed for 60 ns while GB REMD simulations were extended to 50 ns. 

Because Glu had two symmetric Oε in the side chain, we used PMFs of distance between Hγ 

(Ser) and Cδ (Glu) to define PMFs of H-bond instead of distance between Hγ (Ser) and Oε (1 

and 2) of Glu. The choice of Cδ (Glu) for PMF calculating was consistent with previous 

reports.30b, 34b, 56  

 

2.2.5.2 Arg-Ala-Ala-Glu Model Peptide (RAAE). RAAE was used as test system due to its 

small size and the availability of TIP3P data from Okur et al.34b Okur and coworkers34b 

demonstrated that Arg salt bridge strength in RAAE was 2.5-3 kcal/mol stronger in GB-OBC 

than in TIP3P. Shang et al.56 later corrected this GB-OBC overestimation by reducing radii of 

HN+( Arg)  from 1.3 Å to 1.1 Å. We had initially hypothesized that simply including RAAE 

structures in training would help reduce salt bridge strength, and performed GB-Neck2 

simulations using original mbondi2 radii. However, the stability was still significantly 

overestimated compared to TIP3P, and we thus performed several simulations with various 

combinations of modified radii to identify a value that better reproduced the PMF in TIP3P. 

Particularly, we performed REMD simulations of GB-Neck2 by using unmodified mbondi2 H 

radii and also using 4 modified radii for HN+: using a radius of 1.4 Å Oε (Glu) with 1.3 Å, 1.2 Å, 

1.17 Å or 1.1 Å for HN+ (Arg). 300 K trajectories from TIP3P and GB-OBC mbondi2 REMD 

simulations from Okur et al.,34b GB-OBC 1.1 HN+( Arg) REMD simulation from Shang et al.56 

and GB-Neck mbondi2 REMD simulation were used for comparison with GB-Neck2 modified 

mbondi2 simulations. RAAE protocols and initial structures were taken from Okur et al.34b We 

used one 40ns run for GB-Neck and GB-Neck2 simulations. 

 

2.2.5.3 Lys-Ala-Ala-Glu Model Peptide (KAAE). In addition to Arg, Lys can also participate 

in salt bridge interactions. We compared the KAAE salt bridge PMF of GB-Neck2 simulation to 

that from TIP3P simulation. As with RAAE, it was built in a helical backbone conformation to 

allow favorable salt bridge orientation.34b We performed REMD simulations for TIP3P, GB-



 

25 
 

OBC, GB-Neck as controls and two simulations for GB-Neck2 (with mbondi2 and with mbondi3 

(Table 2.S1)) to see which simulation of GB-Neck2 could best reproduce TIP3P salt bridge 

PMF.  

The RAAE protocol was adopted for KAAE. All simulations of GB models were run up 

to 50 ns while TIP3P simulation was run for 30ns. The distance between Nδ of Lys and Cδ of 

Glu was defined as salt bridge distance. A large solvation buffer length was defined to minimize 

periodicity artifacts in the PMF34b, using a truncated octahedron box with 16 Å buffer and 2433 

TIP3P water molecules.  

The SAAE, RAAE and KAAE peptides were built using the tleap program in Amber10 

with acetylated and amidated N- and C-termini. The radii obtained from these optimizations is 

denoted mbondi3 (Table 2.S1). 

 

2.2.5.4 Ala10 Model Peptide. Alanine decapeptide (Ace-Ala10-NH2) was used to compare 

secondary structure content (DSSP)84 and local structural propensities between GB and TIP3P 

simulations following Roe et al.31 To test if the improvement observed in our training would 

translate to better secondary structure balance in MD, we repeated Roe‘s protocol with GB-

Neck2. DSSP and local structure propensities from GB-Neck simulation were compared with the 

ones from TIP3P, GB-OBC and GB-Neck models. Eight replicas were used for REMD 

simulations, starting from extended conformations. One 50ns REMD run was performed for GB-

Neck2 and compared to GB-OBC, GB-Neck and TIP3P data from Roe et al.31  

 

2.2.5.5 HP-1 Model Peptide. Because Ala10 structures were used in fitting GB-Neck2 

parameters, we desired an independent test of the change in helical propensity. HP-1 is good 

candidate since it is n

structures were used in f85. HP-1 (MLSDEDFKAVFGM) is adopted from the N-terminal helix of 

HP36, a 36-residue helical subdomain of the villin headpiece. As with Ala10, we compared 

DSSP and local conformational propensities between GB simulations (GB-OBC, GB-Neck and 

GB-Neck2) and TIP3P. 300K trajectories from TIP3P and GB-OBC REMD simulations were 

taken from Wickstrom et al.85 We performed 2 REMD simulations up to 50ns for GB-Neck and 

GB-Neck2. Nonhelical structures extracted from TIP3P REMD simulation were used as initial 



 

26 
 

structures for REMD. Because HP-1 peptide has Lys salt bridge potential, we the optimized 

mbondi3 radii set (Table 2.S1) for GB-Neck2 simulation.   

We further tested the robustness of GB-Neck2 by evaluating the ability to reproduce the 

experimental thermal stability for 2 small peptides for which experiments indicate different 

secondary structure motifs different from the unstructured Ala10 and helical HP-1: a hairpin 

structure (HP5F),58 and the trp-cage tc5b mini-protein59 that has alpha and 3-10 helix as well as a 

PPII strand and a small hydrophobic core. The short length and the availability of experimental 

melting temperature (and melting curve for tc5b) made these two sequences ideal for testing. For 

each protein, we performed 2 REMD simulations starting from folded and linear structures. 

Simulated melting curves for those proteins were generated by calculating fraction folded (the 

fraction of the number of frames having native structure over the total number of frames from 

simulation) versus temperature. When comparing melting temperature between simulation and 

experiment, it is important to note that the agreement depends on not only on the solvation model 

but also the protein force field. As discussed above, we employed the widely used ff99SB force 

field, but disagreement with experiment can arise from many sources outside GB model accuracy 

so one must use caution when interpreting the results.  

 

2.2.5.6 HP5F model peptide. HP5F58 is a short peptide with sequence 

KKYTWNPATGKFTVQE.58 We first simulated an extended structure in GB-Neck2 using 

REMD, and then extracted the representative structure for most populated cluster at 300K. This 

representative ―folded‖ structure was used to initiate a second independent REMD run. REMD 

simulations were run to 150 ns, 75 ns and 90 ns for GB-OBC, GB-Neck and GB-Neck2 

respectively. We also performed an additional 70 ns run for GB-Neck2 with a SASA (solvent 

accessible surface area) based nonpolar solvation term (gbsa = 1 in Amber) to test the effect. An 

experimental atomic structure of HP5F has not been reported, but as it is expected to adopt the 

same fold as the GB1p peptide,58, 86  we used the GB1p backbone for calculating RMSD during 

HP5F trajectories. The GB1p structure was derived from the C-terminal hairpin of protein G 

(PDB ID: 3GB1,72 residue 41-56). Residues 2 to 15 were chosen for RMSD to avoid the flexible 

termini. Structures having backbone RMSD smaller than 2.0 Å were defined as folded. We chose 

this cutoff based on the position of the minimum separating folded and unfolded regions in the 

simulated RMSD histogram (Figure 2.S8). A full experimental melting curve for HP5F was not 
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available, thus we compared our results to the experimental melting temperature and folded 

population at 298K.58    

 

2.2.5.7 Trp-Cage tc5b model peptide. The tc5b59 variant of trp-cage is a 20 residue peptide 

having sequence of NLYIQWLKDGGPSSGRPPPS.59 The first model from the NMR structure 

ensemble, and a linear structure built by tleap, were used as starting structures for 2 REMD 

simulations for each GB model (340 ns, 240 ns, 160 ns and 72 ns for GB-OBC, GB-Neck, GB-

Neck2 and GB-Neck2 with nonpolar solvation term, respectively). Different GB models have 

different simulation lengths since they have different time scale for convergence (having small 

error bars from two runs). As with HP5F, we defined folded structures by using a backbone 

RMSD cutoff of 2.0 Å based on the RMSD histogram (Figure 2.S9). RMSD to native tc5b was 

calculated for backbone atoms from residue 3 to 18 to avoid flexible termini.30b We compared 

melting curves from GB-OBC, GB-Neck, GB-Neck2 and GB-Neck2 SASA to the ones from 

NMR and CD experiments.59   

 

2.2.6 Protocols for simulations and data analysis 
2.2.6.1 REMD Simulation Protocols. All simulations used to compare GB simulations to TIP3P 

simulations and experiments presented in Results were carried out with AMBER 1022b and the 

ff99SB force field.57 The AMBER 10 code was modified to support GB-Neck2; it is now 

available in AMBER version 11 or later by specifying igb = 8. All simulations used REMD2 for 

enhancing sampling. The time step was 2 fs for all REMD simulations. SHAKE87 was used for 

constraining all bonds to hydrogen. For small protein/peptide simulations, we did not employ a 

surface-area based nonpolar solvation term. Temperature was controlled by using Berendsen 

thermostat88 in TIP3P61 simulations with a time constant of 1.0 ps-1, or by using a Langevin 

thermostat in GB simulations with a collision frequency of 1.0 ps-1. Unless noted, GB-Neck 

simulation used mbondi2 radii,23 GB-OBC simulations used mbondi2 with 1.1 HN+ (Arg)56 while 

GB-Neck2 simulation used mbondi3 (Table 2.S1). Further details of each simulation are given in 

the context. In explicit solvent simulations, peptide models were solvated with TIP3P61 water in 

a truncated octahedron box. PME89 was used for treating long range electrostatic interactions and 

nonbonded interaction cutoff was 8 Å. No cutoff was used in GB simulations. 
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Exchanges in REMD simulations were attempted every 1 ps. 32 replicas were used for 

TIP3P REMD while only 8 replicas were needed for Ala10, HP-1, tc5b, HP5F GB REMD and 6 

replicas were used for GB REMD of RAAE, SAAE, KAAE. Temperature distributions were 

chosen to give 15-25% exchange success, with actual temperatures reported in Table 2.S2. The 

TIP3P REMD simulation protocol was adopted from Okur et al.34b For REMD simulations of 

RAAE, SAAE, KAAE model peptides, backbone atoms were restrained with weak positional 

restraints (1.0 kcal/mol*Å) to the starting helical conformation, as discussed in Okur et al.34b 

There were two runs for tc5b and HP5F REMD simulations, starting from extended and folded 

conformations. We discarded first 25 ns of tc5b trajectories and 40 ns of HP5F trajectories to 

avoid initial structure bias. The error bars in these 2 cases were calculated from two runs. For 

other REMD simulations (Ala10, HP-1, RAAE) only 1 run was performed since the convergence 

time under these conditions had already been reported.31, 34b, 85 In the case of SAAE and KAAE, 

we assumed that converged simulation time for side chain sampling should be comparable to that 

reported for RAAE34b. For Ala10, HP-1, SAAE, RAAE and KAAE REMD simulations, the first 

10 ns of each run was discarded and error bars were estimated from first and second half of data.  

 

2.2.6.2 Data analysis. PMFs were calculated based on the assumption of Boltzmann-weighted 

populations. Data were extracted from histograms of RMSD or distance, using ΔG = -RT 

ln(Ni/N0) where N0 was the population of the most populated bin and Ni was the population of ith 

bin. Calculation of RMSD, DSSP84 and φ/ψ values were done using the ptraj program in 

Amber10. For proteins taken from the Protein Data Bank, all ligands, water molecules and ions 

were removed and missing hydrogen atoms were added by tleap program in Amber10. Local 

secondary structure assignment for Ala10 was previously defined by Roe et al.31 based on φ/ψ 

angle values (alpha (-70°/-25°), left (50°/30°), PP2 (-70°/150°), or extended (-150°/155°)). We 

retained this definition for HP-1 to be consistent with Ala10.   

 

2.2.6.3 Cluster analysis. Cluster analysis was done by the Moil-View program90 following the 

protocol described by Okur et al.34b We used a similarity cutoff of 2.5 Å for all backbone atoms 

of Ala10, trpzip2, and 3Ai3 and HP5F trajectories.  
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2.3 Results and Discussion 

2.3.1 Parameter fitting. The 18 parameters were refit to minimize the objective function. As 

stated in Methods, we performed 5 runs for UOBYQA in which each run started from initial 

random parameters and each UOBYQA run converged at different local minima. We then 

performed 31 runs for parallel GA in which most of runs started with random parameters while 

some runs started by including in initial population GB-OBC parameters, GB-Neck parameters 

or parameter sets from UOBYQA runs. Although convergence among all GA runs would be 

ideal, this was not achieved in ~2500 generations. Each GA run had its own final objective 

function and optimized parameters. Lack of convergence could be due to the choice of GA 

parameters (population size, mutation rate…), or the attempt to explore too large a parameter 

space. Attempting to vary GA parameters such as population size and mutation rate were not 

successful in producing better objective function values. However, our aim was not to get the 

global minimum of the objective function, but to find a parameter set showing significant 

improvement compared to GB-OBC and GB-Neck models. Figure 2.S10 shows the objective 

function evolution during optimization. The best objective function was achieved through 

UOBYQA optimized parameters; these are denoted hereafter as GB-Neck2. The optimized 

values of the 18 refit parameters are given in Table 2.2. Objective function values for GB-OBC, 

GB-Neck and GB-Neck2 are provided in Table 2.1. The objective function of GB-Neck2 is 274, 

which is much smaller than 381 and 445 for GB-OBC and GB-Neck models, respectively.  

It should be noted that although the scaling parameters SX were initially introduced to 

correct for overlap of van der Waals spheres and so might be expected to remain less than or 

equal to 1.0, there is no formal reason that they cannot be greater than 1.0, as pointed out by 

Hawkins et al.21 Indeed, it can be argued that since the purpose of the majority of the parameters 

introduced into the GB formalism is to allow a better fit to higher levels of theory, the overall 

agreement of the model is more important than assigning a physical meaning to the parameters. 

When the SX values are considered free parameters it allows them to correct for other errors in 

the model, such as those introduced by the CFA. 
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Table 2.2. Optimized parameters for GB-Neck2 model. 
 
Parameter Value Parameter Value Parameter Value 
SH 1.426 αH 0.788 αN 0.503 
SC 1.059 βH 0.799 βN 0.317 
SN 0.734 γH 0.437 γN 0.193 
SO 1.061 αC 0.734 αO 0.868 
offset 0.195 βC 0.506 βO 0.877 
Sneck 0.827 γC 0.206 γO 0.388 

 

2.3.2 Comparison with PB solvation energies and effective radii 
2.3.2.1 Results on training sets 

Table 2.1 shows the contributions to the objective function of the absolute solvation 

energies, relative solvation energies, and effective Born radii. For small systems like Ala10 or 

RAAE where most atoms are solvent-exposed, these pairwise GB models perform reasonably 

well,31 and only modest improvement in these metrics is obtained with refitting. Particularly, 

abs_e and rel_e to PB calculation of GB-Neck2 for Ala10_set1 are 0.8 and 1.0 kcal/mol, 

compared to 1.1 and 1.6 kcal/mol of GB-OBC or 2.7 and 2.3 kcal/mol of GB-Neck, respectively. 

In larger systems like trpzip2, 3Ai3 or HP36, more substantial improvement was seen in GB-

Neck2. For example, abs_e for 3Ai3 was reduced from 10.1 (GB-Neck) or 7.6 (GB-OBC) to 3.7 

kcal/mol (GB-Neck2). For a given molecule, obtaining more accurate GB absolute solvation 

energies was easier than relative solvation energy. HP36, for instance, has abs_e of 4.3 kcal/mol 

(GB-Neck2), which is 24.1 kcal/mol lower than abs_e of GB-Neck (85.2 % reduction in error), 

while rel_e of GB-Neck2 for this training set is only improved by 0.3 kcal/mol (5.9 % 

reduction). This result suggests that refitting leads to improvements in systematic error of GB-

Neck across all conformations (see Figure 2.1). GB-Neck2 also has better agreement with PB in 

calculating effective Born radii. The GB-Neck2 eff_rad_rmsd to ‗perfect‘ radii of Ala10 (0.10 Å) 

was smaller than GB-OBC and GB-Neck (0.16 Å and 0.19 Å respectively). Once again, the 

improvement is more significant for larger systems. The eff_rad_rmsd for the protein HP1113 set 

is 1.47 Å for GB-Neck2 as compared to 1.82 Å for GB-OBC or 2.27 Å for GB-Neck. 

Overall, there is improvement of absolute solvation energy, relative solvation energy and 

effective radii calculation for GB-Neck2 for all training sets as compared to GB-OBC and 

original GB-Neck model.  
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2.3.2.2 Results on test sets. In this section, we employ larger test sets to gauge the transferability 

of the new parameters. As stated in Methods, we designed two test categories: type I and II. Type 

I had a peptide / protein system that was used in training, but with many more conformations, 

while test set type II had entirely different molecules than those in the training sets.  

 

Comparison with PB solvation energy. The abs_e and rel_e to PB data are presented in Table 

2.3. The trend observed for the type I test sets is consistent with results for the training data, 

indicating that the structure variation was sufficient in the training data to permit application to 

more structure variety while retaining the improvement compared to the older GB models. For 

instance, abs_e for Ala10 test set from GB-OBC, GB-Neck and GB-Neck2 are 1.1, 2.2 and 1.0 

kcal/mol respectively while rel_e are 0.7, 0.7 and 0.5 kcal/mol for GB-OBC, GB-Neck and GB-

Neck2. For more complex molecules, the test set results closely match those from the training 

set: the abs_e, for example, of trpzip2 test set from GB-OBC, GB-Neck and GB-Neck2 are 9.2, 

8.4 and 3.2 kcal/mol which are close to 9.5, 8.3, 2.8 kcal/mol for trpzip2 training set, 

respectively.   

Results for type II test sets (Table 2.3) indicate that the improvements are transferable to 

independent systems, with lower abe_e and rel_e for GB-Neck2 as compared to GB-OBC and 

GB-Neck. There is little improvement for very small proteins like tc5b and DPDP. However, 

larger proteins show quite dramatic improvement. For example, abs_e of GB-Neck2 for the 

AIDS drug target HIV1-PR was 17.2 kcal/mol, eliminating 85% - 87% of the error as compared 

to GB-OBC (115.0 kcal/mol ) or GB-Neck (133.1 kcal/mol). Additionally, rel_e of GB-Neck2 

for HIV1-PR was 16.8 kcal/mol, significantly improved as compared to 20.1 kcal/mol error with 

GB-OBC and GB-Neck. Since relative energies control the equilibrium populations, this 

improvement would be expected to have a significant impact on the ensemble sampled in MD 

simulations. 
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Table 2.3. abs_e and rel_e (kcal/mol) between each GB and PB calculation for type I and II test 
sets, shown for multiple GB models. Type II test sets are indicated in bold.  
 

 GB-OBC GB-
Neck 

GB-
Neck2 

  GB-
OBC 

GB-
Neck 

GB-
Neck2 

(A) abs_e (kcal/mol)  (B) rel_e (kcal/mol) 
Ala10 1.1 2.2 1.0  Ala10 0.7 0.7 0.5 
Trpzip2 9.2 8.4 3.2  Trpzip2 1.6 1.9 1.2 
3Ai3 7.2 10.6 4.0  3Ai3 2.1 2.0 1.9 
RAAE 1.3 1.6 1.4  RAAE 0.6 0.7 0.5 
HP36 21.3 29.7 6.6  HP36 6.0 6.0 5.4 
tc5b 7.4 13.4 5.3  tc5b 1.8 2.6 1.8 
DPDP 3.4 12.7 3.6  DPDP 2.0 2.2 1.9 
HIV1-PR 115.0 133.1 17.2  HIV1-PR 20.1 20.1 16.8 
Lysozyme 72.2 88.4 13.1  Lysozyme 13.4 13.5 11.9 

 

Comparison with PB ‘perfect’ radii. In order to test the transferability in improvement of 

effective Born radii from training to testing stage, we randomly extracted 100 tc5b structures 

having backbone RMSD to native structure smaller than 2.5 Å to compare effective radii from 

GB to PB. Since calculating PB ‗perfect‘ radii for large proteins is computationally expensive,16 

we chose tc5b as a system large enough to have buried atoms and small enough to be 

computationally tractable. In addition, native-like structures were chosen to have a wide range of 

effective radii from atoms in molecule‘s surface to deeply buried atoms. The inverse of effective 

radii is used in calculating forces, thus it makes sense to compare inverse effective radii.24 The 

RMSD between GB and PB inverse effective radii for GB-OBC, GB-Neck and GB-Neck2 are 

0.068, 0.052 and 0.054 respectively. GB-Neck2 and GB-Neck have nearly the same RMSD and 

the performance of these models is somewhat better than GB-OBC.  

Figure 2.1 shows 2D histograms for the TC5b set of inverse effective radii from GB 

models compared to inverse of ‗perfect‘ radii derived from PB. The effective radii of buried 

atoms (lower left region) were still underestimated in GB-OBC while GB-Neck and GB-Neck2 

had less degree of underestimation. However all three models seemed to overestimate effective 

radii of atoms near surface of the molecules (upper right region). GB-Neck2 is somewhat 

improved for effective radii calculation of atoms in the middle region of the plot in which the 

most populated bins lie close to the diagonal. For atoms in this region, GB-OBC and GB-Neck 



 

33 
 

tend to overestimate effective radii, perhaps leading to the dramatic improvement in systematic 

error with GB-Neck2 seen in Tables 2.1 and 2.3.    

 
Figure 2.1. 2D histograms of inverse effective Born radii of each GB model versus PB ‗perfect‘ 
radii for tc5b. Perfect agreement is shown by the diagonal line. The color indicates the frequency 
(number of atoms) in each bin. 
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In summary, the results from the test sets confirm the improvement from the new 

parameters is transferable from a set of structures used for training to different set of structures 

not used in training as well as to entirely different proteins.    

 

2.3.3 Comparison with explicit water MD: hydrogen bonds, salt bridges and secondary 
structure  

A particular goal of this work was to reduce the errors in secondary structure bias and salt 

bridge strength previously reported for GB models compared to results from explicit water 

models such as TIP3P. The results presented in previous sections showed significant 

improvement of GB-Neck2 model in calculating solvation energy and effective Born radii when 

using PB as a benchmark.  It is of interest to determine if better match to PB also results in 

improved correspondence of GB with reference simulations in explicit water, which tend to be 

much more computationally demanding. We hypothesized that fitting to the more accurate PB 

continuum water model could help improve agreement between GB and explicit water.  

We next tested GB-Neck2 to see if this improvement could translate to improvement in 

balancing secondary structure populations and improving salt bridge strength. The comparison 

between GB and TIP3P simulations, however, does not solely depend on the GB model. Firstly, 

performance of a GB model is heavily affected by the intrinsic Born radius set that defines the 

boundary between solute and solvent. Secondly, GB only calculates the polar part of solvation 

free energy and simulation results also depend on the accuracy of nonpolar solvation 

contributions, such as cavity formation and van der Waals interactions with solvent. Since the 

simple SASA-based nonpolar solvation approach currently available in Amber has known 

limitations,9, 12-13 the main focus of this work is improved agreement in polar solvation free 

energy. However, in order to roughly estimate the affect that including this term has on results, 

simulations were performed with and without the commonly used surface area based nonpolar 

term for the HP5F and tc5b systems. 

 

2.3.3.1 Strength of hydrogen bonds and salt bridges 

The salt bridge is formed by oppositely charged side chains of Arg (or Lys) and Glu (or 

Asp). Conventionally, the ion pair interaction could be adjusted by changing the radii of HN+ of 

Arg. For example, Geney et al.30b and Shang et al.56 empirically decreased the radius of HN+ of 

Arg from 1.3 Å to 1.1 Å to match the salt bridge PMF from GB to that from TIP3P simulation. 
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However, we recognize that the radii (and hence desolvation penalty) of the carboxyl oxygen 

atoms can also be modified to change the balance of desolvation and Coulombic contributions. 

One approach to determine which group to adjust is to examine carboxyl interactions in the 

absence of a positively charged partner. We first chose a simple peptide system, SAAE, to 

investigate H-bond strength between the ionized side chain of Glu with the side chain of Ser. 

Original mbondi2 radii23 were used for all GB models. Figure 2.2 shows the distance PMFs of 

Hγ (SER) and Cδ (Glu) for TIP3P, GB-OBC, GB-Neck, and GB-Neck2 models. The H-bond is 

thermodynamically unstable in all cases, meaning that the H-bonded distance is a local and not 

the global free energy minimum. All of these GB models fail to reproduce the solvent-separated 

local minimum near 5 Å; such behavior is expected for continuum models. The H-bond in GB-

Neck2 is 0.7 kcal/mol stronger than in TIP3P, while GB-Neck and GB-OBC H-bond strength are 

comparable to TIP3P. We empirically decreased the carboxyl oxygen radii from 1.5 Å to 1.4 Å 

to reproduce the profile obtained in TIP3P.  The modified carboxyl oxygen radii should be 

applied to charged carboxyl groups in Asp and Glu sidechains as well as C-terminal residues. 

 
Figure 2.2. PMFs for side chain H-bond formation in the SAAE model peptide for various 
solvent models. The 2 GB-Neck2 curves used different Born radii for the Glu side chain 
carboxyl oxygen atoms, indicated in Å in the legend. 
 



 

36 
 

Having carboxyl oxygen radii of Glu sidechain adjusted, we next investigated the salt 

bridge formed by Arg and Glu. We originally included a set of RAAE structures in our training 

set (Table 2.1) for explicitly training the salt bridge. The fitting resulted in modest improvement 

in solvation energy calculation for these ion pairs as compared to GB-OBC and GB-Neck. We 

therefore expected improved agreement between salt bridge PMFs from GB-Neck2 and TIP3P 

REMD simulations for this RAAE system. Salt bridge PMFs from REMD runs for different GB 

models and TIP3P are shown in Figure 2.3A, with variation of the Arg HN+ Born radii in the 

mbondi2 set; PMFs for GB-OBC, GB-Neck, GB-OBC 1.1 Å HN+, GB-Neck2 with 1.4 Å Oε and 

GB-Neck2 with 1.4 Å Oε + 1.17 Å HN+ are shown. All GB profiles have a global minimum 

slightly shifted from the one in TIP3P due to the difference in salt bridge geometry between GB 

and TIP3P, discussed in more detail by Okur et al.34b With standard mbondi2 radii (1.5 Å Oε of 

Glu and 1.3 Å HN+ of Arg) the PMF indicates salt bridges from GB-Neck2 simulation are ~3.5 

kcal/mol stronger than in TIP3P, significantly worse than the 1.0 kcal/mol and 2.0 kcal/mol 

stronger with GB-OBC and GB-Neck, respectively. This implies that fitting to PB solvation 

energies did not help improve salt bridge profile (RMSD between GB and PB absolute energies 

for RAAE test set (Table 2.3) is 1.4 kcal/mol). We thus hypothesize that PB with mbondi2 radii 

may also have too strong salt bridge compared to TIP3P, as indicated by Shang et al.56 With new 

carboxyl oxygen radii (1.4 Å) fit to SAAE PMFs and standard HN+  radii (1.3 Å), the salt bridge 

with GB-Neck2 is still ~2.0 kcal/mol stronger than in TIP3P (Figure 2.S11). Thus, radii of HN+ 

of Arg were empirically reduced from 1.3 Å to 1.17 Å to match the TIP3P PMF curve (Figure 

2.3). The PMF from GB-Neck2 with 1.17 HN+ (Arg) also matches well to that from GB-OBC 

with modified HN+ radii as reported in Shang et al.56, suggesting that modification of this radius 

is a general way to improve salt bridges in GB models. The physical justification for adjusting 

these radii is discussed in detail by Geney et al.30b  

We next addressed whether primary amines (Lys and N-term) needed comparable 

corrections to Arg. Figure 2.3B shows the PMFs for KAAE from GB-OBC, GB-Neck and GB-

Neck2 (all with mbondi2) and GB-Neck2 with mbondi3 radii. As discussed above, none of the 

GB models reproduce the solvent-separated minimum seen with explicit water. In GB-Neck2 

with mbondi2 radii, the salt bridge was ~1.0 kcal/mol stronger than TIP3P while the GB-OBC 

salt bridge was ~0.5 kcal/mol stronger. In contrast, the salt bridge with GB-Neck mbondi2 was 

~0.5 kcal/mol weaker than in TIP3P. GB-Neck2 with mbondi2 and modified carboxyl oxygen 
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showed near-quantitative match to TIP3P PMF, suggesting that our caboxyl changes were 

sufficient and no adjustment of radii is needed for HN+ of Lys side chain or N-terminal amines.  

The new radii set with modified carboxyl oxygen and Arg HN+ is denoted mbondi3 

(Table 2.S1). Overall, mbondi3 appears to be the best radii set for use with GB-Neck2 in 

reproducing TIP3P PMFs of salt bridge interactions. In the remainder of this work manuscript, 

all simulations of GB-Neck2 used mbondi3 intrinsic Born radii unless noted otherwise.  

 

   
 

Figure 2.3. Salt bridge PMFs for various solvent models. Panel A shows the PMF profiles for 
RAAE (Arg salt bridge) while panel B shows PMFs for KAAE (Lys salt bridge). GB-OBC, GB-
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Neck and GB-Neck2 used original mbondi2 radii set while GB-OBC 1.1 HN+ used mbondi2 with 
modified HN+(Arg). GB-Neck2.mb3 used the optimized radii set denoted mbondi3 (Table 2.S1). 

 

2.3.3.2 Evaluating α-helical bias  

Ala10 Model Peptide. Roe et al.31 showed that the ability of a GB model to reproduce PB 

solvation energies for Ala10 was well correlated with the extent of helical bias obtained in 

simulations compared to TIP3P simulation. We therefore hypothesize that our new GB model, 

with better agreement to PB, should also better reproduce secondary structure preferences as 

compared to TIP3P. Roe et al.31 quantified the accuracy by comparing DSSP and local 

conformational propensity between GB and TIP3P simulations. We repeated these analyses for 

our GB-Neck2 model, using GB-OBC and GB-Neck results as controls (Figure 2.4, with 

numerical data provided in Table 2.S3).  

 

 
 Figure 2.4. Secondary structure (upper) and local conformational propensities (lower) for each 
residue of Ala10 at 300K from REMD simulations using different solvent models.  
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GB-Neck2 has reduced alpha and turn content as compared to GB-OBC (4.4 % vs. 10.1 

% in OBC for alpha content; 16.2 % vs. 25.5 % in OBC for turn content). However, the original 

GB-Neck still has somewhat better agreement to TIP3P data (1.4  % vs. 2.5  % in TIP3P for 

alpha content; 4.6 % vs. 2.9  % in TIP3P for turn content). Although 3-10 helix content was 

reduced for GB-Neck2, the population is still somewhat too large compared (9.3 % in GB-Neck2 

and 12.7 % in OBC vs. 2.9  % in TIP3P). GB-Neck2 also has higher preference for residue to 

sample the helical region of the Ramachandran map (30.3 % in GB-Neck2 and 22.6 % in GB-

Neck vs. 6.2 % in TIP3P). Although GB-Neck2 better reproduced absolute and relative solvation 

energies for Ala10 training set and Ala10 test set than GB-Neck, this improvement seems not to 

transfer to better agreement with TIP3P simulation. There might be several reasons for this. First, 

the mbondi2 radii set (mbondi3 is the same as mbondi2 for systems that do not have Arg, Glu, 

Asp or charged C-termini) was not specifically optimized for use with GB-Neck, and the 

improved agreement to TIP3P for this combination may be fortuitous cancellation of error.  This 

same cancellation of error may make the performance of GB-Neck better than PB in this 

particular case; however it is difficult to get converged REMD data when using PB solvation, 

and such calculations are out of the scope of the present work. In addition, the small 

improvement in energy compared to PB may not be enough to improve structure results 

compared to TIP3P simulation for this system. This seems reasonable since we have seen 

significant improvement for larger systems like HP5F or tc5b, which will be shown below. 

 

HP-1 Model Peptide. Because Ala10 structures were used in training GB-Neck2, we repeated 

the same analyses as we did for Ala10 but for a different peptide system (HP-1) to confirm the 

results in balancing secondary structure (Figure 2.5). Furthermore, unlike Ala10, HP-1 is known 

to adopt modest helical content in solution.85 Similar trends to Ala10 were observed in DSSP 

data and local alpha content (Table 2.S4). Particularly, the alpha content from GB-Neck was 

slightly smaller than TIP3P content while GB-Neck2 alpha content was somewhat larger (23.8 % 

in GB-Neck2 vs. 18.9 % in GB-Neck vs. 21.6 % in TIP3P). GB-OBC had too much alpha 

content (43.9 %). Although all GB models had close average turn content compared to TIP3P, 

GB-Neck and GB-Neck2 had better agreement as indicated by DSSP. This shows that 

performance of GB-Neck and GB-Neck2 on alpha content is somewhat system dependent, likely 
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due to the role of side chain interactions in helix formation of HP-1.85 However, the trend 

remains that GB-Neck tends to destabilize alpha conformations, as demonstrated above and as 

previously reported by Dill et al.49 and Roe et al.31 Overall, the good performance of GB-Neck2 

in balancing secondary structure can be transferred from training system (Ala10) to testing 

system (HP-1).  

 
Figure 2.5. Secondary structure (upper) and local conformational propensities (lower) at 300K 
for each residue of HP-1, obtained from REMD simulations using different solvent models.  

 

2.3.4 Folding of HP5F and tc5b: Comparison with experimental melting temperature. The 

above GB simulation results were compared to TIP3P simulations using the same protein force 

field. However, one of the main purposes of improving a GB model is to get closer agreement 

between computational and experimental data, particularly for simulations that are currently 

difficult or intractable in explicit water. However, such comparisons are more complex than the 

comparison between GB and TIP3P simulation because they also depend on the protein force 

field used. Deviations from experiment may not be a result of weakness in the GB part of the 

model, and accurate reproduction of experimental data could arise from fortuitous cancellation of 
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error and may not provide proof of an accurate solvent model. Nonetheless, the comparison to 

experiment provides a useful measure of the quality one might expect from this particular 

combination. For the purpose of this testing, we used the combination of the GB-Neck2, 

mbondi3 radii and the ff99SB force field.57 This widely adopted force field was used since it has 

been shown to well balance secondary structure.57, 60c, 91  

We compared equilibrium thermal stability between different GB models and experiment 

(NMR or CD) for HP5F58 and tc5b,59 which adopt different structure motifs (hairpin and helix-

turn-PPII).5a, 30b, 92 Simulations with GB-Neck2 were also repeated including a SASA-based 

nonpolar solvation term in order to ascertain its impact on results. 

Figure 2.6A shows the simulated melting curves for HP5F for GB-OBC, GB-Neck, GB-

Neck2 and GB-Neck2 SASA models compared to experiment data. The melting temperature and 

fold population of GB-Neck2 at 298 K (317K and 74%, respectively) are in excellent agreement 

with experimentally determined values (326  K and 82%).58 For the tc5b mini-protein, the 

melting curves for GB-Neck2 and NMR and CD experiments59 are shown in Figure 2.6B. GB-

Neck2 predicts a melting temperature of 302 K, which is again close to the experimental value of 

315 K59 and to the reported value of 321 K from TIP3P REMD simulation93 with ff99SB force 

field. The excellent agreement between GB-Neck2 simulation and experiment is promising since 

several groups reported significantly elevated simulated melting temperatures for tc5b.94 Pitera et 

al.94a reported a melting temperature of ~400K from REMD simulation of GB-HCT model + ff94 

force field. Zhou et al.94b also obtained a melting temperature above 400K when using TIP3P 

model + OPLS-AA force field. Compared to GB-Neck2 simulations, GB-OBC and GB-Neck 

significantly underestimate melting temperature for both testing systems (GB-OBC: ~307 K and 

~264 K; GB-Neck: <275K and ~290K for HF5F and tc5b respectively). GB-Neck especially 

destabilizes the native hairpin even at very low temperature.  

   GB-Neck2 runs with and without the nonpolar term both produce reasonable estimations 

of melting points for HP5F and tc5b (317 K and 335 K for HP5F; 302 K and 324 K for tc5b for 

simulations with and without nonpolar term respectively). Inclusion of the SASA-based nonpolar 

term provides small increases in stability but does not dramatically impact the results for these 

systems. It is likely that use of a better nonpolar model (such as that in AGBNP228) could 

improve results even further, however that is beyond the scope of the current work, which 

focuses on the polar component of solvation. 
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Figure 2.6. Panel A and B show the thermal stability profiles for the HP5F and tc5b respectively 
in GB-OBC, GB-Neck and GB-Neck2 (with and without SASA) REMD simulations, compared 
to experimental data.58-59 

2.4 Conclusion 

Pairwise GB solvation models remain desirable due to their high computational 

efficiency, but many weaknesses have been reported. We propose a new parameter set for the 

GB-Neck model, obtained by making several key parameters that relate to interstitial cavities 

dependent on chemical element. Adding more parameters called for use of a much larger training 

set than employed in the past, therefore we developed conformation libraries containing 

thousands of structures for peptide and protein sequences of various lengths and structure 

propensities. Our objective function for training included absolute and relative solvation free 

energies compared to PB, as well as accuracy of effective Born radii of the atoms. Final 

empirical adjustments were made to some of the intrinsic radii to improve agreement with 
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explicit solvent simulations. These modifications help GB-Neck reproduce the H-bond and salt 

bridge PMFs of TIP3P simulations. The new GB-Neck2 model not only shows better results for 

the training systems, but for a variety of tests systems that measure solvation free energy, 

secondary structure propensity and even thermal stability profiles compared to experimental 

data. Thus the combination of GB-Neck2 model, radii set, force field used here is recommended 

for future study of peptide or protein simulations.  

Our GB-Neck2 model shows significant improvement in solvation energy and effective 

radii calculation as compared to GB-OBC and GB-Neck. This model, however, is still based on 

the CFA integral calculation which has been shown to overestimate effective radii,17 compared to 

much slower numerical models such as GBMV95 or GB-R617 using non-CFA integrals. Through 

parameter fitting, our approach thus has attempted to empirically compensate for the CFA as 

much as possible. Onufriev et al.27 recently developed an analytical form of GB-R6 (named 

AR6) but the resulting accuracy was substantially decreased from the numerical form (NR6), and 

performed worse than GB-Neck2 on our training and test sets.96 We believe that our strategy in 

fitting parameters, as well as use of the training and test sets we have developed, could help to 

improve the performance of AR6 and future solvation models.  

Our results also show that despite not including a nonpolar term, GBNeck2 is still able to 

improve agreement to TIP3P as well as experiment, and it is likely that further improvement will 

be seen with the addition of a more accurate term for nonpolar solvation free energy. 

Future work will include optimization of additional parameters for nucleic acid 

simulations.97  
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Appendix 2. Supporting document  

 
 
Figure 2.S1. Backbone RMSD (Å) to native trpzip2 for structures in trpzip2 set used for training 
GBNeck2 parameters. Residues 3-12 were used to calculate RMSD to avoid the flexibility of 
termini.  
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Figure 2.S2. Backbone RMSD (Å) to X-ray structure of 75 HP36 structures used in training 
GBNeck2 parameters. Residues 3 to 34 were used to calculate RMSD to avoid the flexibility of 
termini.  
 

 
 

Figure 2.S3. Backbone RMSD histogram of trpzip2 structures used in testing GB and PB 
solvation energies. RMSD histogram is shown instead of RMSD plot for trpzip2 due to the large 
number of structures.  
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Figure 2.S4. Backbone RMSD (Å) to X-ray structure of 3500 HP36 structures used in testing 
GBNeck2 parameters. Residues 3 to 34 were used to calculate RMSD to avoid the flexibility of 
termini.  
 

 
 

Figure 2.S5. Backbone RMSD (Å) histogram of Tc5b structures used in testing GB and PB 
solvation energies. Residues 3 to 18 were used to calculate RMSD to avoid the flexibility of 
termini.  
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Figure 2.S6. Cα RMSD (Å) to closed X-ray structure for HIV-PR test set.  
 

 
 

Figure 2.S7. Backbone RMSD (Å) to native lysozyme structure (PBD ID: 1IEE) of 1000 
lysozyme structures used for testing GBNeck2 parameters. Residues 4-125 were used to 
calculate RMSD to avoid the flexibility of termini.  
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Figure 2.S8. Histogram of backbone RMSD (Å) of HP5F from 2 GBNeck2 simulation runs. 
300K trajectories were used for calculating RMSD. 2 Å minimum separated folded and unfolded 
region. 
 
 

 
 

Figure 2.S9. Histogram of RMSD (Å) of TC5b from 2 GBNeck2 simulation runs. 300K 
trajectories were used for calculating RMSD. 2 Å minimum separated folded and unfolded 
region.  
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Figure 2.S10. Objective function value versus the number of generations in for several Genetic 
Algorithm (GA) runs. Because there is large number of runs, we are showing only 6 runs in 
Figure 2.S10 in which 2 runs included GBNeck and GBOBC parameters (named as ―Neck‖ and 
―OBC‖ runs), 2 runs had random initial populations (names as ―Random guess 1‖ and ―Random 
guess 2‖ runs) and 2 runs included parameters from UOBYQA runs (named as ―User guess‖ and 
―Neck2‖ runs). For ―Random guess 1‖, ―Random guess 2‖ and ―OBC‖ runs, objective functions 
were reduced dramatically after ~200 generation while for ―Neck‖ run; objective function was 
reduced significantly after ~750 generations. All of objective functions above were then reduced 
insignificantly during generation from 750 to 2500. This means that those GA runs stuck in the 
local minima. Per ―Neck2‖ run, objective function was not reduced during optimization; this 
means that GA run did not help objective function escape from local minima found by 
UOBYQA. This could be due to that our choice of GA parameter was not really good or due to 
GA method itself. Parameters from ―Neck2‖ run, however, were still chosen for our final 
working parameter because they had lowest objective function among all GA runs. The result 
indicates that UOBYQA might be a good optimization program for this kind of parameter fitting. 
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Figure 2.S11. Salt bridge PMFs for various GBNeck2 simulations compared to TIP3P data. We 
used new Oε (Glu) radius (1.4 Å) with different HN+(Arg) radii (1.3, 1.2, 1.7 and 1.1 Å) . The 
PMF from GBNeck2 run using HN+ radius of 1.17 Å shows the best match to TIP3P PMF. 
 

Table 2.S0.1 HP1113 set, having 6 large proteins for training GBneck2 effective radii 
 

Family PDB ID Number of 
residues 

HIV-1 protease  1TSU 198 
Protein A 1BDD 60 
Ubiquitin 1UBQ 76 

Fatty acid-binding protein 1AEL 131 
FK506 binding protein 1FKG 107 
B1 domain of protein G  3GB1 56 
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Table 2.S0.2 Summary for test sets used for comparing GB and PB solvation energies. Type II 
test sets are indicated in bold. 
 

Test set Number 
of 

structures 

Number 
of 

residues 

Net 
charge 

(C) 
Ala10 50000 10 0 
Trpzip2 80000 12 +2 
3Ai3 49000 19 +4 
RAAE 50000 4 0 
HP36 3500 36 +3 
tc5b 103000 20 +1 
DPDP 50000 20 +2 
HIV1-PR 1427 198 +8 
Lysozyme 1000 129 +8 

 
Table 2.S1. New radii set mbondi3 for GB-Neck2 compared to mbondi2 radii set. H(X) means H 
bound to X atom. H(N+, Y) means HN+ of amino acid Y (Y=Arg, Lys). O(COO-; Glu, Asp or C-
terminal) is Oxygen of charged carboxyl group of Glu, Asp or C-terminal. The differences 
between mbondi3 and mbondi2 are bold.  
 

Atom mbondi2 mbondi3 
H(C) 1.2 1.2 
H(N) 1.3 1.3 

H(N+, Arg) 1.3 1.17 
H(N+, Lys or N-terminal) 1.3 1.3 

H(O) 1.2 1.2 
H(S) 1.2 1.2 

C 1.7 1.7 
N 1.55 1.55 
O 1.5 1.5 

O(COO-; Glu, Asp or C-
terminal) 

1.5 1.4 

S 1.8 1.8 
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Table 2.S2. Temperatures (K) for each peptide system from GB and TIP3P REMD simulations 
 
SAAE 

GB 
SAAE     
TIP3P 

RAAE 
GB 

KAAE 
GB 

KAAE 
TIP3P 

Ala10 
GB 

HP-1 
GB 

HP5F 
GB 

TC5b 
GB 

 

256.5 291.4 300.0 261.2 296.3 246.2 277.4 280.0 264.0  
300.0 300.0 348.7 300.0 300.0 271.8 300.0 300.0 281.4  
350.9 308.8 405.3 344.6 303.8 300.0 324.4 315.0 300.0  
410.5 318.0 471.0 395.9 307.6 331.2 350.8 325.0 319.8  
480.2 327.3 547.5 454.7 311.5 365.5 379.4 340.0 340.9  
561.7 337.0 636.3 522.3 315.5 403.5 410.3 360.0 363.3  

 346.9   319.5 445.4 443.7 380.0 387.3  
 357.2   323.5 491.6 479.8 400.0 412.9  
 367.7   327.6      
 378.5   331.7      
 389.7   335.9      
 401.2   340.2      
 413.0   344.5      
 425.2   348.9      
 437.8   353.3      
 450.7   357.7      
 464.0   362.3      
 477.6   366.8      
 491.7   371.5      
 506.2   376.2      
 521.2   380.9      
 536.5   385.8      
 552.4   390.6      
 568.6   395.6      
 585.4   400.6      
 602.7   405.7      
 620.5   410.8      
 638.8   416.0      
 657.6   421.3      
 677.0   426.6      
 697.0   432.0      
 717.5   437.4      
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Table 2.S3. Average Percent Secondary Structures and Local Conformational Propensities from 
Ala10 REMD Simulations 
 

 TIP3P GB-OBC GB-Neck GB-Neck2 
 

(A) DSSP (Secondary Structure) 
3-10 helix 2.89 ± 0.06 12.66 ± 0.07  4.64 ± 0.09  9.33 ± 0.23 
alpha-helix 2.45 ± 0.63 10.06 ± 0.08  1.37 ± 0.01  4.38 ± 0.07 
pi-helix 0.01 ± 0.01   0.09 ± 0.02   0.01 ± 0.01   0.01 ± 0.00 
turn 14.26 ± 0.18 25.54 ± 0.09 14.21 ± 0.30 16.20 ± 0.44 
 
(B) Local Conformational Propensity (Backbone Dihedrals) 
alpha 16.20 ± 0.33 45.85 ± 0.20 22.63 ± 0.15  30.26 ± 0.02 
left   6.00 ± 0.28   2.58 ± 0.03   1.29 ± 0.04    1.99 ± 0.23 
PP2 34.65 ± 0.29 15.14 ± 0.09 25.45 ± 0.04  20.35 ± 0.30 
extended 17.61 ± 0.38   9.87 ± 0.10 19.83 ± 0.15  18.79 ± 0.05 
 
 
Table 2.S4. Average Percent Secondary Structures and Local Conformational Propensities from 
HP-1 REMD Simulations 
 

        TIP3P      GB-OBC      GB-Neck    GB-Neck2 
 

(A) DSSP (Secondary Structure) 
3-10 helix   6.76 ± 0.40  9.93 ± 0.05 11.04 ± 0.21 16.05 ± 0.14 
alpha-helix 21.59 ± 0.41 43.90 ± 0.05 18.91 ± 1.99 23.75 ± 0.88 
pi-helix   0.09 ± 0.01   0.59 ± 0.25    0.37 ± 0.03   0.50 ± 0.01 
turn 19.42 ± 0.50 18.77 ± 0.26 19.50 ± 1.00 21.58 ± 0.14 
 
(B) Local Conformational Propensity (Backbone Dihedrals) 
alpha 36.90  ± 0.79 62.43  ± 0.25 39.49  ± 1.88 49.31  ± 1.70 
left   4.61  ± 0.19   3.72  ± 0.37   1.66  ± 0.33   1.72  ± 0.29 
PP2 15.57  ± 0.23   7.73  ± 0.17 15.89  ± 1.32   9.56  ± 0.48 
extended 10.55  ± 0.11   4.84  ± 0.02 11.74  ± 0.75   8.27  ± 0.55 
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Chapter 3. Folding simulations for proteins with diverse topologies are accessible in days 

with a physics-based force field and implicit solvent 

 

 

 

 

 

Acknowledgments. This chapter is direct excerpt with minor change from ―Nguyen, H.; Maier, 

J.; Huang, H; Simmerling, C., Folding simulations for proteins with diverse topologies are 

accessible in days with a physics-based force field and implicit solvent.‖ Nguyen and Maier are 

co-first authors. 

Abstract. The millisecond timescale needed for molecular dynamics simulations to approach 

quantitative study of protein folding is not yet routine. One approach to extend the simulation 

time scale is to perform long simulations on specialized and expensive supercomputers such as 

Anton. Ideally, however, folding simulations would be more economical while retaining 

reasonable accuracy, and provide feedback on structure, stability and function rapidly enough to 

partner directly with experimental protocols. Various approaches to this problem typically 

involve different compromises between accuracy, precision and cost; the goal of this work is to 

address whether simple implicit solvent models have become sufficiently accurate for their 

weaknesses to be offset by their ability to rapidly provide much more precise conformational 

ensembles as compared to explicit solvent. Here, we demonstrate that our recently developed 

physics-based model performs well on this challenge, enabling accurate all-atom simulated 

folding of proteins with a variety of sizes, secondary structure and topologies. The simulations 

were carried out using the Amber software on inexpensive GPUs, providing ~1µsec/day per GPU 

and >2.5 milliseconds overall. We also show that native conformations are preferred over 

misfolded structures for most of the proteins. For 3 of the 17 proteins tested, however, folding is 

successful but misfolded structures are thermodynamically preferred, suggesting opportunities 

for further improvement.  
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3.1 Introduction 

Proteins typically function properly only after folding into a specific three-dimensional 

structure.  Experimental techniques can very accurately determine folded structures, as 

evidenced by >90,000 structures available in the protein data bank98.  However, this remains a 

small subset of the number of known sequences99.  Moreover, protein folding is a dynamic 

process, involving nanosecond to millisecond timescale transitions among many unfolded 

states.3, 37a   Insight to the factors controlling the folding landscape is crucial to designing 

proteins with new or enhanced functionality, determining the structures of proteins not yet 

characterized experimentally, or understanding detrimental effects of protein misfolding and 

aggregation.  

Atomistic simulation models could potentially elucidate folding with spatial, temporal 

and energetic resolution, but millisecond-scale simulation is far from routine.100  One way 

around the timescale problem is approaches like Rosetta, where a combination of empirical and 

physical rules aids in the prediction of the final native coordinates101.  Limited experimental data 

can also be used to focus the search and eliminate inconsistent structures102.   The structural 

optimization approach, however, does not provide physical details about the folding process 

itself, and may be less useful for disordered or dynamic proteins where physics-based approaches 

may be more successful. Folding@Home44 makes use of  otherwise idle computer time to 

harvest numerous but relatively short simulations, which can then be assembled into models 

describing folding.103  Recently, Shaw and colleagues used the specialized Anton 

supercomputer104 to directly fold 12 proteins. 46 This brute-force calculation spanning ~8 ms 

remains state of the art.   

Is there a way to simulate protein folding dynamics in atomic resolution using 

inexpensive computer hardware that would make these protocols more widely accessible? 

Implicit solvent models can dramatically accelerate folding due to lower viscosity that facilitates 

chain diffusion1a. Pairwise variants of the generalized Born (GB) model21 perform particularly 

well on inexpensive GPUs105, leveraging a vast consumer video game market to make folding 

simulations more widely accessible.  However, many fast GB models are inaccurate31, often with 

incorrect secondary structures preferences and salt bridge strength, thus succeeding in anecdotal 

cases but lacking broad transferability. GBMV220 is arguably the most accurate GB model, but at 
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a cost of reduced performance.14 The best performing combination of implicit solvent and 

protein force field can result from fortuitous cancellation of error in models that have significant 

but compensating weaknesses49.  

Recently, we reported development of a new fast pairwise GB model that was trained to 

reproduce more accurate Poisson-Boltzmann solvation across a broad range of peptide and 

protein systems106. Here, we combine it with our widely used ff99SB protein force field107, along 

with our recently updated protein side chain parameters. 108 The solvent and protein energetics 

were trained for independent accuracy, in an attempt to avoid cancellation of error and improve 

transferability.  In this report, we demonstrate that this new physics-based combined model is an 

attractive tradeoff, enabling accurate folding for all but 1 of a set of  17 proteins ranging from 10 

to 92 amino acids. We address two key issues in detail: the sampling problem (whether 

simulations can fold to the correct structure) and the accuracy problem (whether the preferred 

structure in the simulated ensemble is native-like). 

3.2 Methods 

3.2.1 Peptides and proteins studied  

Seventeen systems were simulated (Table 3.S1), including 12 studied by Shaw and 

colleagues46: CLN025, Trp-cage, BBA, villin HP36, WW domain GTT, NTL939, BBL, protein 

B, homeodomain 2P6J, the NuG2 variant of protein G, α3D, and λ-repressor. We added a second 

WW domain (Fip35),109 and several larger systems: NTL952, cold shock protein A (CspA), 

hypothetical protein 1WHZ, and Top7.  Unless otherwise noted, RMSD values are for Cα atoms 

regions well defined in structures based on experiments. 

 

3.2.2 Simulation details 

All MD simulations were carried out using the GPU implementation105 of the pmemd 

program in AMBER1422a with the combination of GB-Neck2,106 mbondi3 intrinsic radii,106 and 

ff14SBonlysc, which includes ff99SB107 with new side chain dihedral parameters from 

ff14SB108. We did not use the backbone dihedral modifications from ff14SB, since they are 

empirical adjustments aimed at improving agreement between experiment and simulations in 

explicit water. The protocol delivered 0.6 to 1.4 μs/day (Table 3.S2).  
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There are many potential limitations of simple implicit solvent models, such as lack of 

structured water and ions. In addition, nonpolar solvation contributions  were not included in this 

work, as methods for their accurate treatment are less well developed, and their treatment via 

surface area (as done in Amber) is overly simplistic, significantly slows the calculations, and has 

been reported to bias nonpolar interactions.12  Although the hydrophobic effect plays a major 

role in protein folding, we note that neglecting nonpolar solvation also omits the attractive 

dispersion interaction with solvent, partially compensating for the hydrophobic effect110. On the 

whole, it seems reasonable to test our model without the nonpolar term, since we showed 

previously that simulations without the nonpolar term performed well on smaller peptide 

systems.30  In the section for each system below, we provide figures showing the SASA as a 

function of RMSD for each system, which provides a qualitative indication of the potential 

impact of including the SASA term in the simulations. 

Initial structures were built using the LEaP module of AmberTools111 then minimized and 

equilibrated in three 250 ps stages: heating from 100 K to the production temperature with heavy 

atom positional restraints of 10 kcal mol-1 Å-2, reducing force constant from 10.0 to 1.0 and then 

to 0.1 kcal mol-1 Å-2. A time step of 4 fs was used with hydrogen mass repartitioning.112 Bonds 

involving hydrogen were constrained by the SHAKE algorithm87 with a tolerance of 0.00001. 

Temperature was controlled with a Langevin thermostat with collision frequency γ = 1.0 ps-1. We 

used 300 K except as follows. We initially used 300 K for Fip35; as the native structure was 

stable 3.for 10 μs, however, the temperature was raised to 325 K to aid folding. We used the 

same temperature for GTT, which is a variant of Fip35. HP36 and BBL unfolded within tens of 

ns at 300 K, so these systems were simulated at 290 K. Our subsequent use of REMD avoids the 

need for selecting a single optimal folding temperature. 

3.2.3 ff14SBonlysc 

Our ff14SBonlysc force field, freely available as part of AmberTools 14 from the Amber 

web site at ambermd.org, used the backbone dihedral corrections of ff99SB 113 with updated 

dihedral side chain corrections fit to MP2114 /6-31+G**115 //HF/6-31G*115 ab initio side chain 

energy surfaces of dipeptides at α (-60°, -45°) and β (-135°, 135°) backbone conformations; all 

other parameters were from ff94116.  To limit variability to predominantly side chain motions and 

to limit backbone-side chain hydrogen bonding that may be incorrectly modeled by fixed charges 
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in vacuo, all backbone dihedrals were restrained.  Valine was fit to 10° χ1 scans.  Aspartate 

(ionic and neutral), asparagine, cysteine, isoleucine, leucine, serine, threonine, phenylalanine, 

tyrosine, tryptophan, and histidine (δ-, ε-, and doubly-protonated) were fit to 20° χ1 and χ2 two-

dimensional scans.  Glutamate (ionic and neutral), glutamine, and methionine were fit to 

randomly distributed conformations extracted from high temperature simulations.  Quantum 

calculations of the one- and two-dimensional scans employed GAMESS (US) (1 MAY 2012 

(R1))117 whereas quantum calculations of the structures from high temperature simulation 

employed Gaussian 98118.  Molecular mechanics calculations were performed using Amber 11 

and 1222c, 119.  Fitting was performed by a genetic algorithm120 using GAlib121, with parameters 

restrained to phase shifts of 0 or π to permit simulation of different enantiomers.  A complete 

description of the parameter development will be published elsewhere. 

 

3.2.4 Clustering 

Means algorithm was used with distance defined by Cα RMSD to generate 50 clusters 

using default settings in ptraj122. The clustering for REMD was performed for the lowest 

temperature trajectory. Snapshots were used from 5 ns intervals, but this interval was adjusted to 

ensure between 4000 and 7000 frames. 

 

3.2.5 Nonpolar Solvation Analysis 

Structures were extracted every 1 ns from extended and native MD simulations.  The 

combined set was postprocessed in SANDER to calculate the cavity contribution to nonpolar 

solvation (gbsa=2 in Amber), which is proportional to the solvent-accessible surface area 

determined by recursively optimizing spheres around each atom starting from icosahedra123.  We 

then generated population histograms of surface area contribution versus RMSD to the native 

structure with grid spacing of 0.5 kcal mol-1 in nonpolar solvation energy and 0.5 Å in RMSD. 

 

3.2.6 Protein folding events (Fip35) 

Folded and unfolded conformational cutoffs were assigned by visual inspection of two-

dimensional RMSD population histograms (RMSD values for hairpin 1 and for hairpin 2).  The 

Fip35 folded cutoffs were 2.7 and 1.2 Å RMSD for hairpins 1 and 2, respectively.  The Fip35 
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unfolded cutoffs were 5.0 and 4.5 Å RMSD for hairpins 1 and 2, respectively. These numbers 

were empirically selected to reflect visual boundaries in population around the two states. 

Whenever a structure went above the two unfolded cutoffs (both hairpins unfolded), it was 

considered unfolded.  Whenever a structure went below the two folded cutoffs, it was considered 

folded.  The total simulation period between an unfolded conformation and a folded 

conformation was considered a folding path.  Each path was plotted in two-dimensional RMSD, 

with lines colored by time through red, yellow, green, cyan, and blue.  The sequence of folding 

was determined by manually evaluating which RMSD dropped first—visually, whether the 

folded state was reached from the top (metric on x-axis folded first), the side (metric on y-axis 

folded first), or diagonally from a conformation where neither was pre-formed.  

 

3.2.7 Order parameter calculations 

Lipari-Szabo NH librational order parameters S2 124 were calculated using the cpptraj122 

implementation of iRED 125, which does not require separation of internal and external motions, 

over 8 ns windows for lysozyme, as done elsewhere126, and 5 ns for cold shock protein, 

consistent with its tumbling time127, in each trajectory.  Uncertainties were determined by 

standard errors in the average S2 for each trajectory.  Simulations for order parameter 

calculations were performed with a 1 fs timestep.  GB-Neck2 simulations used Langevin 

dynamics with a constant of 91 ps-1 to mimic water viscosity128.  TIP3P simulations did not use 

barostat or thermostat following equilibration.  Lysozyme was extended to 96 ns simulation time, 

and cold shock protein to 60 ns, yielding 12 windows per simulation. 

TIP3P129 simulations used the particle-mesh Ewald approximation130 with a direct non-

bonded cutoff of 8 Å.  Equilibration proceeded by minimization of the experimental structure 

with 100 kcal/mol/Å2 restraints on protein heavy atoms, followed by 100 ps of restrained heating 

at constant volume from 100 K to 300 K using the weak-coupling (Berendsen) 

thermostat131.  Following 100 ps at 300 K and constant volume, the pressure was equilibrated to 

1 bar with isotropic position scaling, for 100 and 250 ps with time constants of 100 fs and then 

500 fs and restraints of 100 kcal/mol/Å2 and then 10 kcal/mol/Å2.  Then the N, Cα, and C were 

restrained during minimization, followed by three 100 ps simulations with temperature and 

pressure time constants of 500 fs, reducing restraints from 10 kcal/mol/Å2 to 1 kcal/mol/Å2, and 

then 0.1 kcal/mol/Å2.  Finally, the volume of the unrestrained system was equilibrated with time 



 

60 
 

constants of 1 ps with a 2 fs time step, removing center-of-mass translation every ps, for 1 ns. 

NVE production simulations used a direct sum tolerance of 10-6 and SHAKE132 applied 

to bonds to hydrogen with a tolerance of 10-6 Å. 
 

3.2.8 General REMD setup 

Temperature ranges for REMD were chosen for an acceptance ratio of ~0.25. The 

number of replicas ranged from 6 to 24, depending on system size (Table 3.S2). Exchanges were 

attempted every 1 ps. Snapshots were saved every 100 ps. 

 

Extended REMD (extREMD) 

Extended REMD refers to REMD simulations initiated from fully extended initial 

structures (built by LEaP in Amber) for all replicas. We performed 17 REMD runs for 17 

systems starting from extended conformations Temperatures are indicated in Table 3.S3. We 

performed additional REMD calculations for hypothetical protein 1WHZ using final snapshots 

from extended MD run (named extMDREMD).  

 

Seeded REMD 

The goal of running seeded REMD was to indicate which structure (folded or unfolded) 

is preferred at low temperatures, under conditions in which all of the structures of interest are 

present in the replica set at the same time. Even though all clusters may have been sampled in the 

REMD run, they may not have been sampled at the same time, and thus the temperature of the 

replicas (or the population of the clusters at various temperatures) does not indicate relative 

favorability. Although the seeding procedure does provide REMD with the opportunity to rank 

the structures, the resulting ―melting‖ behavior is artificial, since it depends on the numbers of 

structures of each type used in seeding. We performed seeded REMD for NuG2 variant, CspA, 

Lambda Repressor, 1WHZ, and Top7. Temperatures are indicated in Table 3.S4. 

We performed two seeded REMD simulations with NuG2 variant. In the first, we 

continued the extREMD calculation, but adding 2 native structures (from an MD run of the 

crystal structure) at 2 new temperatures in the middle of the previous temperature ladder: 309.0 

K and 334.0 K. In the second seeded REMD, we alternated the most populated cluster from 
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extREMD (11.4 Å RMSD) and a native-like structure (1.0 Å RMSD) through twelve 

temperatures beginning at 250.0 K. 

 For CspA, we alternated misfolded (10.0 Å), near-native (4.7 Å), and native-like (1.2 Å) 

cluster structures through twelve temperatures beginning at 250.0 K. 

 For λ-repressor, we alternated misfolded (12.0 Å), the lowest RMSD from extREMD, 

and native structures through twelve temperatures beginning at 250.0 K. 

 For hypothetical protein 1WHZ, we alternated 2 unfolded (10.6 Å, 10.0 Å), 2 partly 

folded (3.1 Å, 4.2 Å), and 1 native-like (1.5 Å) replicas through twenty temperatures 

beginning at 242.0 K.  

 For Top7, we alternated partly folded (2.7 Å), unfolded (11.2 Å), and native-like (1.5 Å) 

replicas through eighteen temperatures beginning with  240.0 K.  

Seeding REMD was run for ~40ns for all cases. This was determined to be adequate to 

sort the replicas such that all replicas starting from the same structure were grouped in a 

continuous temperature range, as compared to the alternation that was used at the start. The 

simulation length was also short enough that they generally did not sample large structure 

changes, since this is not the goal in these calculations. 

 

3.2.9 RMSD calculation 

RMSD calculations and cluster analysis were performed with ptraj122 in AmberTools111. 

RMSD calculations excluded flexible termini or other regions, such as loops, that were not well 

defined in the crystal structure or family of NMR structures (as described below and tabulated in 

table 3.S3). The reference structure was the experimentally derived structure or, where none was 

available, the structure of a homologue as described. 

CLN025  

We simulated full-length CLN025. All the Cα atoms in the x-ray structure133 were used to 

calculate RMSD. 

Trp-cage 

We simulated full-length Trp-cage tc5b. We calculated RMSD against the first model of 

the NMR ensemble59, excluding residues 1 to 2 and 19 to 20 as flexible termini. 
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BBA  

We simulated full-length BBA. We calculated RMSD against the first model of the NMR 

ensemble134, excluding residues 1 to 3 and 27 to 28 as flexible termini. 

Pin1 WW domain mutants: Fip35 and GTT 

2F21 is a fast-folding Pin1 WW domain mutant109. Fip35 is a faster folding (13 μs) 

mutant based on residues 6–38 of 2F21135. GTT is an even faster folding (4 μs) mutant based on 

Fip35 plus the two prior residues in 2F21136.  We simulated full-length Fip35 and GTT.  We 

calculated RMSDs against 2F21, using residues 10 to 32—the first residue of the first β-strand to 

the final residue in the last β-strand. 

HP36 

We simulated the thermostable C-terminal fragment (residues 41 to 76) of the chicken 

villin headpiece (HP36). Shaw and colleagues46 used the HP35 variant of villin peptide with 

norleucine double mutant64 to accelerate folding. We chose the HP36 variant64, which includes 

only standard amino acids. We calculated RMSDs against an averaged NMR structure (PDB ID: 

1VII)64, using residues 43 to 72 regions to exclude flexible termini of the NMR ensemble of a 

G34L mutant137. 

NTL9 (39 AA) 

NTL9 (39) is an N-terminal truncation (residues 1 to 39) of N-terminal domain of 50S 

ribosomal protein L9 (NTL9).  We simulated the K12M mutant. We calculated RMSDs against 

residues 1 to 39 of the crystal structure of the full-length K12M sequence (PDB ID: 2HBA)138. 

BBL 

We simulated the H142W mutant of BBL, residues 124 to 170—the residues in a solution 

structure ensemble139 (PDB ID: 2WXC).  We calculated RMSDs against the experimental 

structure skipping the flexible N-terminal residues and the flexible loop from residue 152 to 158.  

Our mask thus included residues 133–151 and 159–170. 

Protein B 

We simulated a K5I/K39V double mutant of truncated Protein B (residues 7–53) of the 

NMR structure (PDB ID: 1PRB), as done previously7. We calculated RMSDs against the NMR 

structure using residues 8–50, including the start of the first helix to the end of the last helix. 



 

63 
 

Homeodomain 

We simulated a computationally re-designed variant of Drosophila Melanogaster 

Engrailed homeodomain140. We calculated RMSDs against the first model of the NMR ensemble 

(PDB ID: 2P6J)140, using residues 5 to 48 to exclude flexible termini. 

NTL9 (52 AA) 

In addition to the 39 residue NTL9 described above, we also simulated the full length N-

terminal domain of the 50S ribosomal protein L9 (NTL9) K12M138, denoted as NTL9 (52 AA). 

We calculated RMSDs against the first monomer in the crystal structure (PDB ID: 2HBA). 

NuG2 variant 

We simulated residues 6 to 61 of a N37A/A46D/D47A mutant of NuG2 (PDB ID: 

1MI0141), as done previously136. We calculated RMSDs against the crystal structure of 

unmodified NuG2, including all simulated residues from 6 to 61. 

CspA 

We simulated the major cold shock protein of Escherichia coli, CspA, excluding the first 

residue missing from the x-ray structure (PDB ID: 1MJC142). We calculated RMSD against all 

structured regions in the experimental structure (residues 4–14, 16–23, 29–36, 48–56, and 62–

70), as the loops are flexible in an NMR ensemble of the same sequence (PDB ID: 3MEF127). 

Hyp protein 1WHZ 

We simulated full-length hypothetical protein from Thermus thermophilus HB8. We 

calculated RMSDs against all residues in the crystal structure (PDB ID: 1WHZ143). 

α3D 

We simulated full-length α3D, a de novo designed three-helix bundle144.  We calculated 

RMSDs against all residues in the solution structure (PDB ID: 2A3D144). 

λ-repressor 

We simulated truncated (residues 6–85) monomeric D14A/Y22W/Q33Y/G46A/G48A 

mutant of λ-repressor studied previously 136.  We calculated RMSD against the unmutated 

homologue (PDB ID: 1LMB145), however. In the x-ray structure, dimeric λ-repressor binds 

DNA, along with multivalent ions. We calculated RMSDs against all simulated residues (6–85) 

in the first protein chain in this complex. 
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Top7 

We simulated residues 3 to 94 of Top7, which was computationally designed with a 

novel fold146. We calculated RMSDs against the x-ray structure (PDB ID: 1QYS146), using 

residues 3 to 94. 

3.3 Results 

Our goal in this study is to investigate feasibility of simulating all-atom folding for a 

variety of proteins with a single force field and solvent model combination, using inexpensive, 

widely available computer hardware and software. System sizes range from short peptides to 

proteins of nearly 100 amino acids, with topologies including all α-helix, all -sheet, and 

combinations. Experimental folding times vary from microseconds to seconds (Table 3.S2). 

Overall, the set comprises a challenging benchmark for any folding study. We first performed a 

baseline study on native state dynamics of 2 proteins, CspA and lysozyme, and compared 

backbone order parameters from the resulting simulations to those obtained from experiment as 

well as from simulation with explicit water (Figure 3.S1). We obtained excellent quantitative 

agreement (0.05 and 0.02 RMSD to experimental and TIP3P S2 for CspA, and 0.02 RMSD to 

both experimental and TIP3P S2 for lysozyme), suggesting that more challenging tests were 

warranted. 

We separate our analysis of protein folding below along two general goals. First, we 

address sampling:  in spite of the limitations of the implicit solvent model, can standard MD 

simulations properly fold to the correct experimental structure when starting from a fully 

extended conformation? Second, we address accuracy: is the experimental structure also the 

most favorable in our model? The latter goal is significantly more challenging; the physics must 

be accurate enough to reproduce the correct global free energy minimum for a variety of 

topologies and secondary structure combinations, and the populations of the minima must be 

well converged in order to make precise predictions. For several of the larger systems studied 

here, convergence was not readily achieved in standard MD, and thus we used replica exchange 

(REMD2). The ability to use REMD further supports our premise that disadvantages of implicit 

solvent are in some cases offset by significant advantages, since REMD on proteins in explicit 

solvent is largely intractable due to computational cost147. 
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3.3.1. Can simulations fold to native conformations? 

Simulations starting in extended conformations were able to locate structures in excellent 

agreement with experiment for 16 of the 17 systems (Table 3.S2). All of the proteins smaller 

than 50 amino acids fold well in standard MD on this timescale, reaching Cα RMSD values 

below 2 Å, except BBL which reaches 3.2Å (all-time series data are in Supporting Information). 

This includes systems with -sheet (the hairpin CLN025 and the 3-stranded sheets Fip35 and 

GTT), α-helix (Trp-Cage, HP36 and protein B) and mixed α/ (BBA and the 39 amino acid 

version of NTL9).  In REMD, these systems all fold to <2.1 Å Cα RMSD, with minimum RMSD 

values often below 1Å. While it is beyond the scope of this work to fully analyze side chain 

packing accuracy, the heavy atom RMSD of the Fip35 conformation with the lowest Cα RMSD 

is 1.8 Å, while that of NTL9 (39 AA) is 1.4 Å, suggesting that highly accurate folding is 

achievable with our protocol.   

The larger proteins (50-92 amino acids) tend to become kinetically trapped in standard 

MD on the microsecond timescale, with only homeodomain (1.9 Å), α3D (2.5 Å) and λ-repressor 

(4.4 Å) finding native-like conformations. The enhanced sampling provided by REMD provides 

notable benefit, with 16 of the 17 proteins now folding to structures with RMSD values under 3 

Å (Figure 3.1). Only the NuG2 variant was still unable to sample the correct conformation; the 

minimum RMSD value is 4.8 Å, with the first hairpin and helix correctly formed, but the second 

hairpin not yet formed. In contrast, NuG2 simulations initiated from the experimental structure 

underwent significant unfolding to ~10 Å RMSD, followed by refolding to an accurate native 

state (< 1.0 Å RMSD, Figure 3.S40).   

One advantage of direct simulation of folding is that it is possible to analyze folding 

pathway(s). Direct comparison of kinetic data to experiments is precluded by our use of low 

viscosity to enhance sampling. Instead, we consider the relative flux through various folding 

pathways, presenting a single example since a comprehensive analysis is beyond the scope of the 

present manuscript. We analyzed which of the 2 hairpins in Fip35 WW folded first in the12 

independent folding events that we observed in the MD run from extended structure (Figure 

3.S16), obtaining a 4:1 ratio favoring initial folding of hairpin 1. This ratio is in excellent 

agreement with the 4:1 ratio reported for explicit solvent simulations of the same system45a.  
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3.3.2. Do the simulations show the correct structure preferences? 

Next, we address the more challenging issue of accuracy, and whether our model could 

predict a qualitatively reasonable structure if it were not already known, by comparing the 

experimental structure to the most populated cluster from simulation.  For 10 of the 17 systems, 

multiple (> 3) folding and unfolding events were observed in the standard MD runs; however, 

many remained poorly converged even on the μs timescale, particularly for the longer proteins. 

We therefore use the REMD ensembles to obtain qualitative estimates of the preferred 

conformations for each protein.  

 

 

Figure 3.1. Comparison of structures based (red) on experiment and (blue) lowest RMSD 

sampled in simulations started from extended conformations. Gray  regions were excluded from 

RMSD calculations. Under each structure is the protein name, chain length and Cα RMSD value. 

 

The cluster with the largest population was in good agreement with conformations based 

on experiment for roughly half (8 of 17) of the proteins studied (RMSD values are provided in 

Table 3.S2, with structures shown in Figure 3.S2). Once again, performance tended to be better 

for proteins under 50 amino acids, with CLN025, Trp-cage, Fip35, GTT and HP36 all 
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preferring the correct structure, with representative structure RMSD values of 0.6-3.0 Å. For 

protein B, the representative structure has an RMSD value of 4.2 Å: properly folded but with a 

slight rotation of the middle helix relative to the core. In the case of BBA, the native zinc finger 

fold is present in the ensemble, but with lower population than the preferred alternate structure 

with RMSD of 4.6 Å, in which the hairpin and helix are both still present, but with somewhat 

longer hairpin and shorter helix. Although the 39 and 52 amino acid long variants of NTL9 both 

fold properly in the simulations, the large RMSDs for the most populated cluster in both systems 

(6.1 and 6.0 Å, respectively) reflect higher population of an otherwise properly folded structure 

with an alternate conformation of the loop connecting -strands 1 and 2. Neglecting this loop, 

the RMSD of the largest clusters become a more reasonable 4.1 and 4.2 Å, respectively. The 

only protein under 50 amino acids that prefers an incorrect fold is BBL, which locates the correct 

fold from extended structures, but favors a conformation with 8.3Å RMSD in which the ends of 

the short N- and C-terminal and intervening helices become disordered. However, the 2nd and 3rd 

most populated clusters have more reasonable RMSD values of 4.3 and 4.8Å. Lindorff-Larsen et 

al.46 estimated a very low melting temperature in BBL simulations (270±10 K), suggesting that 

BBL challenges not only our model, but also MD with explicit water.  

For the other 7 proteins larger than 50 amino acids, only homeodomain and α3D have 

most populated clusters (23% and 33%, respectively) that are close to those observed 

experimentally (3.2 and 4.0 Å, respectively).  The second most populated cluster of 

homeodomain (8%) is even closer to experiment (2.3 Å). For both systems, the differences are 

predominantly in the surface loop regions, and the RMSDs for the 3 helices are 2.5 Å for 

homeodomain and 2.1 Å for α3D.   

As discussed above, the NuG2 variant was the only system that never sampled the native 

conformation, thus the cluster populations cannot report on whether the correct structure would 

be preferred if folding had occurred. To explore this further, we carried out an additional ~40ns 

―seeded‖ REMD simulation continuing from the end of the previous one, but adding 2 

equilibrated native structures at 2 new temperatures in the middle of the previous temperature 

ladder (see Supporting Information for complete details, including descriptions of misfolded 

structures, seeded REMD setup and results). Our expectation was that the REMD exchanges 

would perform sorting, placing the more favorable structures at the lower temperatures. The 

simulations showed a strong preference for the native fold over the other structures, moving both 
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low RMSD structures to low temperatures (Figure 3.S43). We then competed 6 native and 6 

misfolded structures from the initial REMD run. The native structures were again strongly 

preferred at low temperature (Figure 3.S44), suggesting that our model correctly identifies the 

NuG2 native fold, and misfolding represents a sampling failure.   

The other four systems for which the largest cluster in REMD was non-native (RMSDs of 

10–12 Å) were CspA, 1WHZ, λ-repressor and Top7. In each case, examination of RMSD 

history for each of the replicas in REMD showed that only a few replicas properly folded, and 

likewise, only a few misfolded. The data suggest that even though the structures are reproducibly 

sampled, REMD remains unreliable for distinguishing the relative stability of these alternate 

conformations. We again turned to a seeded REMD approach for gaining additional insight into 

the conformational preferences of our model. In each case, native-like structures were alternated 

in the temperature ladder with representative structures from misfolded clusters with large 

populations (Figures S48, S53, S60, S68). The results suggest that, among the 4 proteins with 

unconverged ensembles, our model can accurately identify the native conformation for CspA 

and Top7. For CspA,  only 2 replicas misfolded in REMD, and 2 others located a near-native 

fold, suggesting poor population convergence even after ~30 µseconds of REMD, which is 

perhaps not surprising given the experimental folding rate of ~5 milliseconds148.  REMD seeded 

with native, near-native and misfolded structures showed a strong preference for the native 

structure at the lowest temperatures. Top7 showed similar behavior, with the highest population 

misfolded structure only being sampled by 1 REMD replica. Seeded REMD combining the 

misfolded and correctly folded structures showed a strong preference for the correct fold, moving 

all misfolded structures to higher temperatures. Interestingly, two of the Top7 replicas that were 

initially misfolded underwent spontaneous refolding to the correct structure during this run. The 

results provides additional evidence that that our model prefers the native fold and that the 

variety of kinetic traps that the Top7 simulations encountered was a result of the non-

cooperative, seconds-timescale folding experimentally observed for this system149. 

In contrast to the other systems, the seeded REMD results suggest that the model fails to 

accurately recognize the native conformation of λ-repressor and 1WHZ, preferring misfolded 

over native structures at low temperature. λ-repressor shows transient folding to the native 

structure in REMD, but prefers a misfolded structure with the 5 α-helices largely present, but 

packed against the first helix in a clockwise fashion, rather than counterclockwise as seen in the 
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native fold. 1WHZ also folds to the correct structure with a 3-stranded -sheet and 3 helices, but 

the preferred structure replaces the first β-strand with a helix and the last two helices with two β-

strands. Otherwise, the RMSDs of the first helix and N-terminus (residues 1 to 18) and the 

second and third β-strands (residues 28 to 44) are both 1.8 Å.  

To summarize the analysis of our second goal (conformational preferences), all 11 

proteins smaller than 55 amino acids were reasonably converged and all except BBL preferred 

the native fold, with some differences in loop regions.  For the 6 larger proteins, only α3D 

appears well converged in the REMD runs, with the others all sampling multiple clusters and 

having populations that indicated the model favors non-native folds. We used a seeded REMD 

approach to evaluate the relative populations of native vs. non-native folds, and found that 

NuG2, CspA and Top7 prefer native conformations, while the model prefers misfolded structures 

for λ-repressor and 1WHZ. Overall, the data suggest correct preference for the native fold in 14 

of the 17 proteins that we studied (Figure 3.S2).  

3.4 Conclusions 

We presented ab initio folding for a set of 17 proteins, ranging from 10 to 92 amino 

acids, with different topologies and secondary structure content. We used an efficient implicit 

solvent model106 combined with an accurate protein force field, using the Amber software 

running on GPUs. This largely solves the sampling aspect of folding proteins of this size; we 

demonstrated that folding to the correct structure is achievable for all but 1 of the systems that 

we studied, within run times of several days to 3 weeks.  For the larger proteins where 

convergence was challenging, we used REMD to evaluate the extent to which our model could 

correctly predict preference of native over misfolded structures; such analysis remains highly 

challenging in explicit water. Despite being able to fold to correct structures, some of the 

systems showed stronger preference for alternate, non-native structures, ranging from misfolded 

loops to incorrect topologies.  Future detailed analysis of possible trends in misfolding, quality of 

side chain packing, and overall protein stability, along with application to a larger range of 

systems, could provide crucial insight into the limitations in accuracy of our models, and 

possible routes for further improvement.   
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Appendix 3. Supporting document 

NH order parameters 

 

Figure 3.S1. Order parameters measuring the NH librational motions of (A) CspA and (B) 
lysozyme according to NMR127, 150 (black), GB-Neck2 (red), and TIP3P (blue). All simulation 
data used force field 14SBonlysc with order parameters backcalculated by iRED. Error bars 
reflect the standard deviation of the averages from windows in the simulation. 
 

 

Figure 3.S2. The most populated cluster of each protein starting from extended REMD 
simulations, in blue, aligned to the experimental structure, in red.   In the cases of BBA, BBL, 
NuG2 variant, CspA, Hyp protein 1WHZ, and Top7, the alignment above reflects the parts of the 
structure best reproduced by the simulations, rather than the alignment yielding the lowest 
RMSD.  Below each rendering is the system name, the number of amino acids (AA), and the 
RMSD between the two structures (neglecting the flexible gray regions, as in Figure 3.1). 
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Figure 3.S3. The structure of each protein preferred by the force field, either: the centroid of the 
most populated cluster from extended REMD; or, as in NuG2 variant, CspA, and Top7, the 
preferred cluster in seeded REMD (see main text for details). The color code follows Figure 
3.S2. 
 

Table 3.S1. Sequence of peptides and proteins simulated in this work. Hδ, Hε, and Hδε stand for 
Histidine that is protonated at Nδ, Nε or both Nδ and Nε, respectively. All His protonation states 
were used as indicated in the experimental studies. 
 
System name Sequence 

CLN025 YYDPETGTWY 

Trp-cage NLYIQWLKDGGPSSGRPPPS 

BBA EQYTAKYKGRTFRNEKELRDFIEKFKGR 

WW domain 

Fip35 KLPPGWEKRMSRDGRVYYFNHδITNASQFERPSG 

WW domain 

GTT GSKLPPGWEKRMSRDGRVYYFNHεITGTTQFERPSG 

Villin HP36 MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF 

NTL9 (39 AA) MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEA 

BBL GSQNNDALSPAIRRLLAEWNLDASAIKGTGVGGRLTREDVEKHδεLAKA 

Protein B LKNAIEDAIAELKKAGITSDFYFNAINKAKTVEEVNALVNEILKAHεA 
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Homeodomain MKQWSENVEEKLKEFVKRHδQRITQEELHδQYAQRLGLNEEAIRQFFEEFEQRK 

NTL9 (52 AA) MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEATPANLKALEAQKQ 

NuG2 variant of 

Protein G DTYKLVIVLNGTTFTYTTEAVDAATAEKVFKQYANDAGVDGEWTYDAATKTFTVTE 

CspA (1MJC) 

SGKMTGIVKWFNADKGFGFITPDDGSKDVFVHFSAIQNDGYKSLDEGQKVSFTIESGAK

GPAAGNVTSL 

Hyp protein 

1WHZ 

MWMPPRPEEVARKLRRLGFVERMAKGGHRLYTHPDGRIVVVPFHSGELPKGTFKRILR

DAGLTEEEFHNL 

α3D 

MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVEALRK

EAAAIRDELQAYRHδN 

λ-repressor 

PLTQEQLEAARRLKAIWEKKKNELGLSYESVADKMGMGQS 

AVAALFNGINALNAYNAALLAKILKVSVEEFSPSIAREIY 

Top7 

DIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAE

KFAAILIKVFAELGYNDINVTFDGDTVTVEGQL 
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Table 3.S2. System details. The protein name, PDB ID, number of amino acids of simulated 
system, overall topology, residues in RMSD mask, MD speed (μs/day), MD temperature, native 
MD length (μs), extended MD length (μs), lowest RMSD in extended MD (Å), RMSD of 
extended MD largest cluster centroid (Å), extended REMD simulation time (μs), lowest RMSD 
in extended REMD (Å), RMSD of extended REMD largest cluster centroid (Å), experimental 
folding time. Asterisks following PDB IDs indicate differences between the system in the crystal 
and in the simulation. RMSD region is listed as amino acid residue IDs in PDB from RCSB151. 
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Protein PDB ID # 

AA 

Secondary 

Structure 

type 

RMSD 

region 

(amino 

acid 

numbers) 

μs/day MD 

T, 

K 

MD-

native 

length, 

μs 

MD-

extended 

length, 

μs 

Lowest 

RMSD, 

Å 

Largest 

cluster 

RMSD, 

Å 

REMD-

extended 

length, 

μs 

Lowest 

RMSD, 

Å 

Largest 

cluster 

RMSD, 

Å 

Experimental 

folding time 

(μs) 

CLN025 Honda et 

al.133 

10 beta 1-10 1.4 300 

K 

1.2 2.4  0.5  1.0 0.8 0.3 1.0 ~0.1(300 

K)152  

Trp-cage 1L2Y59 20 alpha 3-18 1.3 300 

K 

1.7 1.0 0.5 0.6 0.4 0.3 0.7 ~ 4 (298 

K)153 

BBA 1FME134 28 mixed 4-26 1.4 300 

K 

5.2 7.8 1.0 1.9 9.1 0.9 4.6 N/A (low 

stability)134 

Fip35 Freddolino 

et al.109 

33 beta 5-27 1.4 325 

K 

29.0 25.6 0.5 1.6 3.0 0.4 1.3 13 (337 K)135 

GTT 2F21*154 35 beta 10-32 1.4 325 

K 

12.4 21.6 0.6 1.5 3.3 0.5 1.4 ~ 4 (353 

K)136 

Villin HP36 1VII64 36 alpha 43-72 1.4 290 

K 

22.1 26.7 1.1 2.4 4.2 1.1 2.3 ~ 10 (330–

350 K)155 
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NTL9 (39 AA) 2HBA*156 39 mixed 1-39 

 

1.4 300 

K 

47.6 65.8 1.9 6.4 30.1 0.4 6.1 ~ 700 (298 

K)138 

BBL 2WXC157 47 mixed 133-

151,159-

170 

1.2 290 

K 

14.1 17.1  3.2  8.5 2.2 2.1 8.3 ~ 14 (283 

K)139 

Protein B 1PRB*158 47 alpha 8-50 1.0 300 

K 

4.6 10.3 1.6 4.2 1.9 1.6 3.3 

(4.2) 

~ 1 (298 

K)159 

Homeodomain 2P6J140 52 alpha 5-48 1.0 300 

K 

7.2 17.3 1.9 3.0 3.5 1.6 3.2 ~ 13 (308 

K)160 

NTL9 (52 AA) 2HBA156 52 mixed 1-52 1.0 300 

K 

11.8 10.2 6.1 11.4 21.2 1.6 6.0 ~1400 (298 

K)138 

NuG2 variant 1MI0*141 56 mixed 6-61 1.0 300 

K 

51.3 54.7 7.5  9.6 28.8 4.8 11.4 ~ 60 (298 

K)161 

CspA 1MJC142 69 beta 4-14,16-

23,29-

36,48-

56,62-70 

0.8 300 

K 

2.7 6.9 8.7 10.1 29.4 2.5  9.9  ~5000 (298 

K)148 
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Hypothetical 

protein from 

Thermus 

thermophilus 

1WHZ 

1WHZ143 70 mixed 6-70 0.8 300 

K 

14.3 22.5 5.9 9.7 9.0 1.9 11.8 not available 

α3D 2A3D144 73 alpha 1-73 0.8 300 

K 

6.6 20.5 2.5 3.7 1.2 2.9 4.0 > 3.2  (323 

K)162 

λ-repressor 1LMB*145 80 alpha Chain3 

6-85 

0.7 300 

K 

26.6 39.3 4.4 10.5 24.0 2.9 11.9 ~ 10 (350 

K)163 

Top7 1QYS146 92 mixed 3-94 0.6 300 

K 

8.0 5.4 12.0 14.7 18.2 2.6 11.2 > 105 (295 

K)149 
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Table 3.S3. Temperatures used for extended REMD simulations 
System Extended REMD temperatures (K) 

CLN025 275.1 · 300.0 · 327.2 · 356.8 · 389.1 · 424.3 

Trp-cage 264.0 · 281.4 · 300.0 · 319.8 · 340.9 · 363.3 · 387.3 · 412.9 

BBA 243.8 · 256.8 · 270.4 · 284.8 · 300.0 · 316.0 

Fip35 285.4 · 300.0 · 315.4 · 331.5 · 348.5 · 366.3 · 385.0 · 404.7 · 425.5 · 447.2 · 470.1 · 494.2 · 519.5 · 

546.0 · 574.0 · 603.4 

GTT 285.4 · 300.0 · 315.4 · 331.5 · 348.5 · 366.3 · 385.0 · 404.7 · 425.5 · 447.2 · 470.1 · 494.2 · 519.5 · 

546.0 · 574.0 · 603.4 

Villin HP36 250.0 · 262.2 · 275.0 · 288.4 · 300.0 · 317.3 · 332.8 · 349.0 

NTL9 (39) 273.3 · 286.3 · 300.0 · 314.3 · 329.3 · 345.1 · 361.6 · 378.8 

BBL 274.9 · 287.2 · 300.0 · 313.4 · 327.4 · 342.0 · 357.2 · 373.2 · 389.8 · 407.2 · 425.3 · 444.3 · 464.1 · 

484.8 · 506.5 · 529.1 

Protein B 290.0 · 300.0 · 316.0 · 329.8 · 344.2 · 359.3 · 375.0 · 391.5 · 408.6 · 426.5 · 445.2 · 464.7 · 485.0 · 

506.3 

Homeodomai

n 

288.7 · 300.0 · 311.7 · 323.9 · 336.6 · 349.8 · 363.5 · 377.7 · 392.4 · 407.8 · 423.8 · 440.3 · 457.6 · 

475.5 · 494.1 · 513.4 

NTL9 (52) 280.0 · 291.6 · 300.0 · 316.2 · 329.2 · 342.9 · 357.0 · 371.8 · 387.2 · 403.2 

NuG2 variant 280.0 · 291.4 · 303.3 · 315.7 · 328.6 · 342.0 · 355.9 · 370.5 · 385.6 · 401.3 

CspA 290.0 · 300.0 · 311.8 · 323.3 · 335.3 · 347.7 · 360.5 · 373.8 · 387.6 · 401.9 

Hypothetical 

protein 

1WHZ 

280.0 · 289.6 · 300.0 · 309.9 · 320.5 · 331.6 · 343.0 · 354.7 · 366.9 · 379.6 · 392.6 · 406.1 

α3D 289.9 · 300.0 · 310.4 · 321.2 · 332.3 · 343.9 · 355.8 · 368.1 · 380.9 · 394.1 · 407.8 · 422.0 · 436.6 · 

451.7 · 467.4 · 483.6 · 500.4 · 517.8 · 535.8 · 554.3 · 573.6 · 593.5 · 614.1 · 635.4 

λ-repressor 290.4 · 300.0 · 309.9 · 320.1 · 330.7 · 341.6 · 352.9 · 364.5 · 376.6 · 389.0 
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Top7 280.0 · 288.5 · 300.0 · 306.3 · 315.7 · 325.3 · 335.1 · 345.3 · 355.8 · 366.7 · 377.8 · 389.3 

 
 
Table 3.S4. Temperatures used for seeded REMD simulations 
 
System Seeded REMD temperatures (K) 

NuG2 variant (1) 250.0 · 260.2 · 270.8 · 281.9 · 293.4 · 305.3 · 317.8 · 330.8 · 344.3 · 358.3 · 372.9 · 388.2 

NuG2 variant (2) 280.0 · 291.4 · 303.3 · 315.7 · 328.6 · 342.0 · 355.9 · 370.5 · 385.6 · 401.3 · 309.0 · 334.0 

CspA 250.0 · 259.2 · 268.8 · 278.7 · 289.0 · 299.7 · 310.8 · 322.2 · 334.1 · 346.5 · 359.3 · 372.6 

Hypothetical 

protein 1WHZ 

242.0 · 250.0 · 258.6 · 267.5 · 271.0 · 276.7 · 286.2 · 296.0 · 306.2 · 311.0 · 316.7 · 327.6 · 

338.9 · 350.5 · 356.0  · 362.6 · 375.1 · 388.0 · 401.3 · 410.0 

λ-repressor (1) 250.0 · 260.0 · 270.0 · 280.0 · 290.4 · 300.0 · 309.9 · 320.1 · 330.7 · 341.6 · 352.9 · 364.5 · 

376.6 · 389.0 

λ-repressor (2) 258.3 · 266.8 · 275.6 · 284.7 · 294.1 · 303.8 · 313.8 · 324.2 · 334.9 · 345.9 · 357.3 · 369.1 

Top7 240.0 · 247.3 · 254.8 · 262.6 · 270.6 · 278.8 · 287.3 · 296.0 · 305.0 · 314.3 · 323.8 · 333.7 · 

343.8 · 354.3 · 365.1 · 376.2 · 387.6 · 399.4 
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System data 
CLN025 

 

Figure 3.S4. CLN025 RMSDs. At top are RMSD versus time for extended and native MD and 
the lowest temperatures from extended REMD. At bottom are RMSD histograms of the second 
half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the 
fraction of the binsize (ρbin). 
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Figure 3.S5. CLN025 replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms shown 
on the right. 
 
Cluster 

population 

57.6 7.8 2.9 2.0 1.9 

Centroid Cα 

RMSD (Å) 

1.0 4.2 3.7 5.1 3.4 
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Table 3.S5. CLN025 top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S6. CLN025 surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is modestly more favorable at low (around 1 Å) than medium (around 4 
Å) RMSDs. 
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Trp-cage 

 

Figure 3.S7. Trp-cage RMSDs. At top are RMSD versus time for extended and native MD and 
the lowest temperatures from extended REMD. At bottom are RMSD histograms of the second 
half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the 
fraction of the binsize (ρbin). 
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Figure 3.S8. Trp-cage replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

28.7 25.0 14.9 13.8 8.1 

Centroid Cα 0.7 0.5 0.7 1.6 0.9 
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RMSD (Å) 

Table 3.S6. Trp-cage top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S9. Trp-cage surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is similarly to slightly more favorable at low (around 1 Å) than medium 
(3 -5 Å) RMSDs. 
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BBA 

 

Figure 3.S10. BBA RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
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Figure 3.S11. BBA replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

34.8 11.0 7.4 4.8 4.3 

Centroid Cα 4.6 3.4 4.1 4.4 5.9 
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RMSD (Å) 

Table 3.S7.BBA top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S12. BBA surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is similarly favorable at low (2 Å) to mid (6 Å) RMSDs, with no strong 
bias favoring low RMSD structures. 
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Fip35 

 

Figure 3.S13. Fip35 RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
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Figure 3.S14. Fip35 replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

70.7 7.5 4.6 4.3 2.4 

Centroid Cα 1.3 7.1 4.2 6.6 7.1 
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RMSD (Å) 

Table 3.S8. Fip35 top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S15. Fip35 surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is similarly favorable from low (1 Å) to medium (8 Å) RMSDs, 
indicating no strong driving force toward low RMSD values. 
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Figure 3.S16. Fip35 folding pathways and population histogram. The twelve unique folding 
pathways from fully unfolded to fully folded, as defined in Methods, are colored from red to 
yellow to green to cyan to blue. Eight proceed by folding of hairpin 1 first, two by folding of 
hairpin 2 first, and two by both simultaneously.  At bottom, histogram with contours defining 
exponents of 2 shows two states in hairpin 1-hairpin 2 RMSD space, with unfolded boxed in red 
and folded in green. Trajectories are from the extended MD run shown in the top left corner of 
Figure 3.S13. 
 
GTT 

 

Figure 3.S17. GTT RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
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of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
 

 

Figure 3.S18. GTT replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

14.7 12.9 9.3 5.1 4.1 
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Centroid Cα 

RMSD (Å) 

1.4 3.8 7.3 7.2 7.2 

Table 3.S9. GTT top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S19. GTT surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is flat from mid (6–8 Å) to low (2-3 Å) RMSD. 
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Villin HP36 

 

Figure 3.S20. HP36 RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
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Figure 3.S21. Villin HP36 replica RMSDs. RMSD to native of each replica from extended 
replica exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

43.3 10.8 10.3 10.2 4.5 

Centroid Cα 2.3 5.5 3.5 6.9 6.9 
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RMSD (Å) 

Table 3.S10. Villin HP36 top 5 extended REMD cluster populations and centroid Cα RMSDs. 

 

Figure 3.S22. Villin HP36 surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is flat from mid (6–8 Å) to low (1–3 Å) RMSD. 
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NTL9 (39 AA) 

 

Figure 3.S23. NTL (39 AA) RMSDs. At top are RMSD versus time for extended and native MD 
and the lowest temperatures from extended REMD. At bottom are RMSD histograms of the 
second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to 
the fraction of the binsize (ρbin). 
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Figure 3.S24. NTL (39 AA) RMSDs, excluding the 7-16 loop described in the main text. At top 
are RMSD versus time for extended and native MD and the lowest temperatures from extended 
REMD. At bottom are RMSD histograms of the second half of each simulation. ρobserved/ρbin 
represents the fraction observed (ρobserved) relative to the fraction of the binsize (ρbin). 
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Figure 3.S25. NTL9 (39 AA) replica RMSDs. RMSD to native of each replica from extended 
replica exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

68.1 8.9 6.8 5.5 2.2 

Centroid Cα 6.1 5.9 6.0 4.6 5.4 
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RMSD (Å) 

Table 3.S11. NTL9 (39 AA) top 5 extended REMD cluster populations and centroid Cα 
RMSDs. 
 
 

 

Figure 3.S26. NTL9 (39 AA) replica RMSDs, excluding the 7-16 loop. RMSD to native of each 
replica from extended replica exchange versus time, colored by snapshot temperature from blue 
to red, with histograms. 
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Figure 3.S27. NTL9 (39 AA) surface area energy versus RMSD. Color indicates the 
histogrammed population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) 
to black (1% of maximum bin population) and then to blue (maximum bin population). The 
correction for the solvent-accessible surface area, determined by recursively optimizing spheres 
around each atom starting from icosahedra, is more favorable at low (~1 Å) RMSD. 
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Table 3.S28. Seeded REMD sorting of NTL9 (39 AA) conformations: partly unfolded (6.2 Å) 
and native-like (1.1 Å), repeated for 12 replicas. At top, RMSD vs time for each temperature 
shows sorting of native-like conformations to the lowest temperatures, with partly unfolded 
structures mixing in by 287.6 K. The line indicates the initial rmsd sampled at that temperature. 
At bottom, histograms show preference of low RMSD conformations at the lowest temperatures, 
with preference of the partly unfolded conformation beginning between 287.6 and 301.3 K. 
 
BBL 

 

Figure 3.S26. BBL RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
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of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
 

 

Figure 3.S27. BBL replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

8.4 6.9 4.9 4.8 4.4 
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Centroid Cα 

RMSD (Å) 

8.3 4.3 4.8 8.2 9.3 

Table 3.S12. BBL top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S28. BBL surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is flat from mid (6–7 Å) to mid-low (3–4 Å) RMSD. 
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Protein B 

 

Figure 3.S29. Protein B RMSDs. At top are RMSD versus time for extended and native MD and 
the lowest temperatures from extended REMD. At bottom are RMSD histograms of the second 
half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the 
fraction of the binsize (ρbin). 
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Figure 3.S30. Protein B replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

18.6 13.9 9.1 4.6 4.6 

Centroid Cα 4.2 3.4 2.7 3.8 3.4 
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RMSD (Å) 

Table 3.S13. Protein B top 5 extended REMD cluster populations and centroid Cα RMSDs. 

 

Figure 3.S31. Protein B surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is similarly favorable at low (2–4 Å) and mid-high (8–9 Å) RMSD. 
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Engrailed homeodomain 

 

Figure 3.S32. Homeodomain RMSDs. At top are RMSD versus time for extended and native 
MD and the lowest temperatures from extended REMD. At bottom are RMSD histograms of the 
second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to 
the fraction of the binsize (ρbin). 
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Figure 3.S33. Engrailed homedomain replica RMSDs. RMSD to native of each replica from 
extended replica exchange versus time, colored by snapshot temperature from blue to red, with 
histograms. 
 
Cluster 

population 

(%) 

22.5 7.9 7.7 6.7 5.6 

Centroid Cα 3.2 2.3 3.9 3.1 7.8 
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RMSD (Å) 

Table 3.S14. Engrailed homeodomain top 5 extended REMD cluster populations and centroid 
Cα RMSDs. 
 

 

Figure 3.S34. Engrailed homeodomain surface area energy versus RMSD. Color indicates the 
histogrammed population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) 
to black (1% of maximum bin population) and then to blue (maximum bin population). The 
correction for the solvent-accessible surface area, determined by recursively optimizing spheres 
around each atom starting from icosahedra, is similarly favorable at low (2–4 Å) and high (9–11 
Å) RMSDs. 
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NTL9 (52 AA) 

 

Figure 3.S35. NTL9 (52 AA) RMSDs. At top are RMSD versus time for extended and native 
MD and the lowest temperatures from extended REMD. At bottom are RMSD histograms of the 
second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to 
the fraction of the binsize (ρbin). 
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Figure 3.S36. NTL9 (52 AA) RMSDs, excluding the 7-16 loop. At top are RMSD versus time 
for extended and native MD and the lowest temperatures from extended REMD. At bottom are 
RMSD histograms of the second half of each simulation. ρobserved/ρbin represents the fraction 
observed (ρobserved) relative to the fraction of the binsize (ρbin). 
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Figure 3.S37. NTL9 (52 AA) replica RMSDs. RMSD to native of each replica from extended 
replica exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

25.0 9.5 8.1 6.6 6.0 

Centroid Cα 6.0 9.6 6.7 6.1 7.2 
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RMSD (Å) 

Table 3.S15. NTL9 (52 AA) top 5 extended REMD cluster populations and centroid Cα 
RMSDs. 
 

 

Figure 3.S38. NTL9 (52 AA) replica RMSDs, excluding loop. RMSD to native of each replica 
from extended replica exchange versus time, colored by snapshot temperature from blue to red, 
with histograms. 
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Figure 3.S39. NTL9 (52 AA) surface area energy versus RMSD. Color indicates the 
histogrammed population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) 
to black (1% of maximum bin population) and then to blue (maximum bin population). The 
correction for the solvent-accessible surface area, determined by recursively optimizing spheres 
around each atom starting from icosahedra, is more favorable at low (1–3 Å) than high (9–12 Å) 
RMSDs. 
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NuG2 variant 

 

Figure 3.S40. NuG2 variant RMSDs. At top are RMSD versus time for extended and native MD 
and the lowest temperatures from extended REMD. At bottom are RMSD histograms of the 
second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to 
the fraction of the binsize (ρbin). 
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Figure 3.S41. NuG2 variant replica RMSDs. RMSD to native of each replica from extended 
replica exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

23.3 18.1 13.8 6.9 6.6 

Centroid Cα 11.4 7.9 9.8 7.5 8.1 
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RMSD (Å) 

Table 3.S16. NuG2 variant top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S42. NuG2 variant surface area energy versus RMSD. Color indicates the 
histogrammed population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) 
to black (1% of maximum bin population) and then to blue (maximum bin population). The 
correction for the solvent-accessible surface area, determined by recursively optimizing spheres 
around each atom starting from icosahedra, is more favorable at low (0–2 Å) RMSD. 
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Figure 3.S43. Seeded REMD sorting of NuG2 conformations: 2 × native-like (0.9 Å) added to 
10 conformations from extended REMD from 10.4 to 30.3 Å RMSD. Lines indicate initial 
RMSD value that each temperature. At top, RMSD vs time for each temperature shows sorting 
of low RMSD conformations to low temperatures. At bottom, histogram shows preference of 
native-like conformations at low temperatures. 
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Figure 3.S44. REMD sorting of NuG2 conformations: unfolded (11.4 Å) and native-like (1.0 Å), 
repeated for 12 replicas. Lines indicate initial RMSD value that each temperature. At top, RMSD 
vs time for each temperature shows sorting of low RMSD conformations to low temperatures, 
except for the native conformation at 388.2 K that unfolded. At bottom, histogram shows 
preference of native-like conformations at low temperatures. 
 
CspA 

For the -barrel CspA, the most populated conformation forms a barrel with correct strands 1-

3, but the long flexible loop from positions 35-47 adopts a -hairpin and displaces strand 5, 

which moves to where strand 4 should be, and the displaced strand 4 adopts a helical 

conformation (Figure 3.S2). The population is comparable to that of another cluster with near-

native fold at 4.8 Å (Table 3.S17).  
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Figure 3.S45. CspA RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
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Figure 3.S46. CspA replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

33.0 17.6 11.5 6.0 5.2 

Centroid Cα 9.9 4.8 9.5 3.3 10.0 
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RMSD (Å) 

Table 3.S17. CspA top 5 extended REMD cluster populations and centroid Cα RMSDs. 

 

Figure 3.S47. CspA surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is more favorable at low (0–2 Å) than high (9–12 Å) RMSDs. 
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Figure 3.S48. REMD sorting of CspA conformations: unfolded (10.0 Å), partly unfolded (4.7 
Å), and native-like (1.2 Å), repeated for 12 replicas. At top, RMSD vs time for each temperature 
shows sorting of low RMSD conformations to low temperatures. Lines indicate initial RMSD 
value that each temperature. At bottom, histogram shows preference of low RMSD 
conformations at low temperatures. 
 
Hyp protein 1WHZ 

The 70 amino acid hypothetical protein 1WHZ folds to the correct structure with a 3-stranded 

-sheet and 3 helices, but the most populated structure replaces the first β-strand with a helix and 

the last two helices with two β-strands. Otherwise, the RMSDs of the first helix and N-terminus 

(residues 1 to 18) and the second and third β-strands (residues 28 to 44) are both 1.8 Å. 

Examining the RMSD evolution of individual replicas in the ~10 µsec REMD run indicates that 

multiple misfolded structures are sampled, typically stable for several µsec, adopting a variety of 

mixed α / topologies (Figure 3.S50–51).  
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Figure 3.S49. Hypothetical protein 1WHZ RMSDs. At top are RMSD versus time for extended 
and native MD and the lowest temperatures from extended REMD. At bottom are RMSD 
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histograms of the second half of each simulation. ρobserved/ρbin represents the fraction observed 
(ρobserved) relative to the fraction of the binsize (ρbin). 
 

 

Figure 3.S50. Hypothetical protein 1WHZ replica RMSDs. RMSD to native of each replica from 
extended replica exchange versus time, colored by snapshot temperature from blue to red, with 
histograms. 
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Cluster 

population 

(%) 

36.1 16.7 14.8 5.5 4.6 

Centroid Cα 

RMSD (Å) 

11.8 7.2 6.6 11.8 13.9 

Table 3.S18. Hypothetical protein 1WHZ top 5 extended REMD cluster populations and 
centroid Cα RMSDs. 
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Figure 3.S51. Hypothetical protein 1WHZ replica RMSDs. RMSD to native of each replica from 
replica exchange initiated with extended MD structures versus time, colored by snapshot 
temperature from blue to red, with histograms.  This differs from the former hypothetical protein 
replica RMSDs by the starting structures of the REMD. 
 
Cluster 

population 

(%) 

43.9 18.1 9.9 5.1 3.3 



 

134 
 

Centroid Cα 

RMSD (Å) 

11.0 3.4 12.5 12.7 11.8 

Table 3.S1. Hypothetical protein 1WHZ top 5 extended MD REMD cluster populations and 

centroid Cα RMSDs. 

 

Figure 3.S52. Hyp protein 1WHZ surface area energy versus RMSD. Color indicates the 
histogrammed population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) 
to black (1% of maximum bin population) and then to blue (maximum bin population). The 
correction for the solvent-accessible surface area, determined by recursively optimizing spheres 
around each atom starting from icosahedra, is slightly more favorable at low (1–3 Å) than high 
(9–12 Å) RMSDs. 
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136 
 

Figure 3.S53. REMD sorting of hypothetical protein 1WHZ conformations: 2 unfolded (11.7 Å, 
10.7 Å), 2 partly folded (3.3 Å, 4.5  Å), and 1 native-like (2.5 Å), repeated for 20 replicas. At 
top, RMSD vs time for each temperature shows sorting of high RMSD conformations to low 
temperatures, followed by partly followed conformations. Lines indicate initial RMSD value that 
each temperature.  At bottom, histogram shows preference of high and then intermediate RMSD 
conformations at low temperatures. 
 
α3D 

 

Figure 3.S54. α3D RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
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of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
 

 

Figure 3.S55. α3D replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

32.7 18.4 9.2 7.1 6.8 
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Centroid Cα 

RMSD (Å) 

4.0 4.1 5.5 10.1 6.0 

Table 3.S19. α3D top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S56. α3D surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is similarly to slightly more favorable at high (10–13 Å) than low (2-4 
Å) RMSDs. 
 
λ-repressor 

The 80 amino acid λ-repressor shows transient folding to the native structure in REMD, but the 

majority of the population adopts a misfolded structure with RMSD of 12 Å (Figure 3.S57). In 

this case, the 5 α-helices are largely present, but they pack against the first helix in a clockwise 

fashion, rather than counterclockwise as seen in the native fold. Using the coordinate-seeded 

REMD approach, we combined structures of the misfolded topology, the lowest RMSD from 

REMD, and native structures. Similar to 1WHZ, the results indicated our model prefers the 

structure with the helices formed but incorrectly arranged around the first helix (S60). 
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Figure 3.S57. λ-repressor RMSDs. At top are RMSD versus time for extended and native MD 
and the lowest temperatures from extended REMD. At bottom are RMSD histograms of the 
second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to 
the fraction of the binsize (ρbin). 
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Figure 3.S58. λ-repressor replica RMSDs. RMSD to native of each replica from extended 
replica exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

53.9 4.4 3.8 3.4 3.3 

Centroid Cα 11.9 10.9 11.2 12.1 9.8 
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RMSD (Å) 

Table 3.S20. λ-repressor top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 

 

Figure 3.S59. λ-repressor surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is flat across low (2-4 Å) to high (12-14 Å) RMSDs 
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Figure 3.S60. REMD sorting of λ-repressor conformations: unfolded (12.1 Å), partly unfolded 
(3.0 Å), and native-like (2.3 Å), repeated for 12 replicas. At top, RMSD vs time for each 
temperature shows sorting of high RMSD conformations to low temperatures. Lines indicate 
initial RMSD value that each temperature. At bottom, histogram shows preference of high 
RMSD conformations at low temperatures. 
 
Top7 

The largest system we studied is the designed protein Top7 (92 amino acids). 

Conformational sampling is observed to be very slow in this system, with the extended 

conformation and folded structure both stable for the entire ~5 µsec MD runs (Figure 3.S61). 

Most replicas spend the majority of the simulation trapped in different local minima, suggesting 

that the data are poorly converged at 20 µsec of REMD (Figure 3.S64). The native topology for 

Top7 resembles 2 zinc finger domains with the -hairpins connected through an additional -

strand, forming a 5-stranded sheet in the protein. The misfolded structure with highest population 

is only sampled by 1 replica. It shows correct placement of strands 3, 4 and 5, as well as the helix 

between strands 3 and 4, with an RMSD of 3.3 Å for the region 42-92 (Figures S2 and S66). -

strand 1 is also folded, but the subsequent strand 2 and helix are not yet well formed. Seeded 

REMD combining the misfolded and correctly folded structures showed a strong preference for 

the correct fold (Figure 3.S3), moving all misfolded structures to higher temperatures (Figure 

3.S68). Interestingly, two of the misfolded replicas refolded to the correct structure during this 

run.  

 



 

144 
 

 

Figure 3.S61. Top7 RMSDs. At top are RMSD versus time for extended and native MD and the 
lowest temperatures from extended REMD. At bottom are RMSD histograms of the second half 
of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) relative to the fraction 
of the binsize (ρbin). 
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Figure 3.S62. Top7 RMSDs, residues 1 to 40. At top are RMSD versus time for extended and 
native MD and the lowest temperatures from extended REMD. At bottom are RMSD histograms 
of the second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) 
relative to the fraction of the binsize (ρbin). 
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Figure 3.S63. Top7 RMSDs, residues 42 to 92. At top are RMSD versus time for extended and 
native MD and the lowest temperatures from extended REMD. At bottom are RMSD histograms 
of the second half of each simulation. ρobserved/ρbin represents the fraction observed (ρobserved) 
relative to the fraction of the binsize (ρbin). 
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Figure 3.S64. Top7 replica RMSDs. RMSD to native of each replica from extended replica 
exchange versus time, colored by snapshot temperature from blue to red, with histograms. 
 
Cluster 

population 

(%) 

35.9 24.1 19.0 3.2 2.2 

Centroid Cα 11.2 2.7 8.3 13.9 8.3 
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RMSD (Å) 

Table 3.S21. Top7top 5 extended REMD cluster populations and centroid Cα RMSDs. 
 
 

 

Figure 3.S65. Top7 replica RMSDs, residues 1 to 40. RMSD to native of each replica from 
extended replica exchange versus time, colored by snapshot temperature from blue to red, with 
histograms. 
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Figure 3.S66. Top7 replica RMSDs, residues 42 to 92. RMSD to native of each replica from 
extended replica exchange versus time, colored by snapshot temperature from blue to red, with 
histograms. 
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Figure 3.S67. Top7 surface area energy versus RMSD. Color indicates the histogrammed 
population in each 0.5 Å by 0.5 kcal mol-1 bin, going from white (no population) to black (1% of 
maximum bin population) and then to blue (maximum bin population). The correction for the 
solvent-accessible surface area, determined by recursively optimizing spheres around each atom 
starting from icosahedra, is more favorable at low (1–3 Å) RMSD. 
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Figure 3.S68. REMD sorting of Top7 conformations: partly folded (2.7 Å), unfolded (11.2 Å), 
and native-like (1.5 Å), repeated for 18 replicas. At top, RMSD vs time for each temperature 
shows sorting of native-like conformations to low temperatures, partly folded to intermediate 
temperatures, and unfolded to high temperatures. Lines indicate initial RMSD value that each 
temperature. At bottom, histogram shows preference of native-like conformations at low 
temperatures and partly folded conformations at intermediate temperatures. 
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Chapter 4. Refinement of Generalized-Born Neck Parameters for Nucleic Acid and Their 

Complex with Protein 
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Abstract: Although the Generalized–Born (GB) model is widely used for protein Molecular 

Dynamics (MD) simulations, there is limited usage for nucleic acid simulations. Most GB 

models are not able to keep stable nucleic structure and others introduce structural bias in protein 

simulation that leads to artifact in nucleic acid and protein complex simulation. In this study, we 

propose a refitting procedure for a recently developed GB-Neck model by designing broad 

training sets and extending the number of empirical parameters. This new parameter set, named 

GB-Neck2nu, significantly reduces energy error to Poisson Boltzmann calculation for both 

absolute and relative energy compared to its ancestor GB-Neck model for both nucleic acids and 

their complex with protein. The improvement in solvation energy calculation translates to 

increased structural stability in DNA and RNA duplexes, quadruplex simulations and in protein-

nucleic acid complexes. The GB-Neck2nu model also successfully folds small DNA and RNA 

hairpins to near native structures as determined from experiment. The robustness of GB-

Neck2nu model is also shown by producing the correct ligand binding site in DNA minor groove 

for tested system.   
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4.1 Introduction 

The interest in computational models of nucleic acids has spiked recently thanks to 

genomics and epigenomics projects and the implications in health (e.g. cancer). This has been 

reflected by increased number of publications describing nucleic acid simulations.35 Nucleic 

acids have been traditionally challenging in simulations due to their highly charged backbones 

and the importance of bound ions.164 The incorporation of Particle Mesh Ewald89 in explicit 

solvent simulations allowed for the first time stable simulations of nucleic acids165. Since then, 

simulations in explicit solvent have been quite standard. 

Explicit solvent simulations are the state of the art in protein and nucleic acid 

simulations, however there are many reasons why one would like to use the more approximate 

implicit solvent simulations, especially pairwise Generalized-Born (GB) solvent model21, 23-24: 

(i.) lower number of particles resulting in faster simulation times and more overlap166 in replica 

exchange molecular dynamics2 (REMD), (ii.) much higher performance on standard GPU-based 

computer architectures3, 48 (breaching the microsecond/day barrier167), (iii.) much more sampling 

thanks to low solvent viscosity,1a (iv) better scaling with the number of CPU.4 For proteins 

implicit solvent simulations have become quite standard.1a, 5b, 50 For nucleic acids implicit solvent 

is even more important: the linear geometry of nucleic acids (as opposed to the globular one of 

proteins) makes for very big water boxes,35 with a ratio of biomolecule to water much lower than 

in the case of proteins. In essence this means that most of the computer time in explicit solvent 

simulations of nucleic acids involves water-water interactions. 

To the best of our knowledge, there are only few GB models that can maintain stable 

nucleic acid simulations.36 Three of them are widely in CHARMM program25 (GBMV,18 

GBMV220 and GBSW26) while two others (GB-HCT,21 GB-OBC23) are widely used in AMBER 

program.22b, 111, 168 Examples of their applications for DNA and RNA simulations can be found 

cited articles.4, 35-36, 169 GBMV and GBMV2 are arguably among the most accurate GB models 

(in term of reproducing solvation energy of higher theory level such as Poisson Boltzmann 

method77) but the accuracy comes with slow speed in MD simulation since those models use 

computationally expensive molecular surface to define solute/solvent boundary.14 Additionally 

GBMV and GBMV2 use a sharp molecular surface boundary between solute and solvent; this 

introduces unstable force calculation in long time scale simulation.170 It is suggested to use small 

time step of 1 fs to achieve stable nucleic duplex simulation170 while the general time step is 
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2fs29, 56, 170 or even 4 fs.167, 171 This even makes GBMV and GBMV2 much slower in MD 

simulation. GBSW26 is an analytical version of GBMV and GBMV2 using Van der Waals 

(VDW) surface to define the solute/solvent boundary. GBSW‘s fast speed in solvation energy 

calculation comes with much less accuracy as compared to GBMV models.14  

Two other GB models that can work with nucleic acid are implemented in AMBER 

program: GB-HCT21 and GB-OBC23. Those models are based on pairwise approximation 

approach introduced by Hawkins et al.21 Latter model (GB-OBC) introduced correction 

parameters to reduce the overestimation of solvation energy of former model (GB-HCT). Those 

two pairwise models use Van der Waals (VDW) surface to define solute/solvent making them 

much faster than GBMV (using molecular surface) with the trade-off lower accuracy. 

Among all tested GB models, GBMV models and GB-OBC are the most accurate models 

in solvation energy calculation for proteins if using higher theory level Poisson-Boltzmann 

calculation as benchmark.14 GB-OBC is in practice more suited for long MD simulation thanks 

to its fast speed and its suitability for parallel calculations.4, 48   

Recently Gaillard et al.36 compared different GB models and they concluded that 

GBMV2 and GB-HCT models are better in reproducing DNA parameters (such as major and 

minor groove width) from experimental data than GB-OBC model. However, GB-HCT (and 

even GB-OBC) introduced strong helical structural bias in protein simulation,31 preventing its 

application from protein/DNA or RNA binding complex simulation. Another pairwise GB model 

such as GB-Neck24 model was developed by introducing correction to GB-OBC to mimic the 

molecular surface (which is more realistic) while keeping similar speed in calculating solvation 

force. Theoretically GB-Neck should be promising approach in achieving both reasonably good 

accuracy and fast speed. However GB-Neck was shown to disfavor native structure of either 

protein or nucleic acid.24, 36, 49 Overall it is clear that there is currently no fast and numerically 

stable GB model that works well with protein and nucleic acid at the same time. We address this 

issue in the current work. 

Our work on a nucleic acid-compatible solvent model closely follows our recent work at 

extending and refitting the GB-Neck model for peptides and proteins.29 The new model for 

proteins, named GB-Neck229, has better agreement to PB method in solvation energy calculation 

or to explicit solvent in reproducing secondary structure profiles and salt bridge strength as 

compared to the older models in Amber (GB-HCT, GB-OBC, GB-Neck)29 or to experiment in 
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quantitatively reproducing thermodynamic profile for different small peptide motifs such as 

hairpin or mix of alpha helix, 3-10 helix, PP2. GB-Neck2 was also shown to successfully fold a 

series of µs to millisecond time scale folding proteins167 which are considered to be a hard 

problem for current computer power using explicit solvent MD simulation.172 This model is 

based on the functional form of GB-Neck model24 but adding flexibility to the model in the form 

of per atom parameters. The process of training and testing new parameter was also iteratively 

designed. Continuing this work, we introduce the GB-Neck2 parameters to work with nucleic 

acids while they can be combined with protein GB-Neck2 parameters. This sets the stage for 

stable simulations of protein-nucleic acid complexes. 

We have tested several options to fit nucleic acid parameters for GB. First, we fitted only 

Phosphate (P) parameters while for other elements, using  the same atom parameters from the 

GB-Neck2 model for both protein and nucleic acid .29 Secondly, we also tried to refit GB-Neck2 

parameters by using the same parameter set for both protein and nucleic acid and ignoring all 

previous GB-Neck2 parameters. Thirdly, we introduced nucleic atoms their own parameters 

rather than reusing the protein ones and then refitted  using an extensive training set, comprising 

various DNA and  RNA motifs such as duplex, pseudoknot, ribosomal RNA etc. In all three 

versions, we unfortunately did not get sufficiently low energy error between the GB and PB 

calculations for the training sets and this made the DNA/RNA duplex strands quickly unfold in 

MD simulations (data not shown).  Therefore we decided to focus on improving parameters for 

duplex structures; its derivation such as hairpin structure, quadruplex and their complex with 

protein.  

In the results section we show how in addition to improving the behavior for isolated 

nucleic acids, we are also able to carry out stable simulations of protein-nucleic acid complexes. 

This covers a major limitation in the field opening the door to the study of major complexes like 

the nucleosome core particle, promoter-DNA interactions, drug-nucleic acid binding. Finally, we 

show an example of the ability of GB-Neck2nu to reproduce the folding of a DNA, RNA hairpin 

and to reproduce the ligand binding to DNA minor groove. 
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4.2 Methods 

4.2.1 Generalized-Born theory 
In implicit solvent model, solvation energy is normally decomposed to two terms, polar 

and nonpolar: ΔGsolvation = ΔGpolar + ΔGnp. Nonpolar term can be roughly approximated by ΔGnp 

= ζ*A (where ζ  is surface tension coefficient and the A term is solute surface area) although 

there are more sophisticated approaches.9, 12, 28 Since the solvation energy is dominated by the 

polar part (particularly for highly charged nucleic acid),11 most of the effort was spent in 

developing more accurate  polar model.20, 23-24, 26, 29 

Polar solvation energy can be calculated from the very accurate, but computationally 

expensive, Poisson Boltzmann (PB) method77 or from much faster Generalized Born (GB) 

model. GB model approximates the polar solvation energy by summing energies of pairwise 

atomic interactions as well as self-interaction. The GB equation was first introduced by Still et 

al.15 and it has been the basis for other GB model developments (eq. 4.1) 
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Here qi, qj are the partial charges of atom i and j with distance of rij. Function fij
GB is defined by 
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Ri and Rj are so-called effective radii of ith and jth atoms. They represent the degree of burial for 

each atom inside the solute. Effective radius of a given atom can be exactly calculated by solving 

the PB equation for the charge of the interested atom only (eq. 4.3). The effective radius 

calculated from PB is defined as ‗perfect‘ radius. ―Perfect‖ radii were shown to yield best 

agreement16 between GB and PB energies if they were applied in the GB equation (eq. 4.1)  
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In GB models, effective radii can be calculated using either the Coulomb Field 

Approximation (CFA) or non-CFA approach.17 Although the former is notorious for 
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overestimating effective radii,17, 19 it still is widely implemented in MD simulation due to its 

simple approximation that makes it easy to derive the analytic form of calculation effective radii. 

The more accurate non-CFA-based GB model, such as GBMV or GBMV220, 26 or recently 

developed R6 model, shows excellent agreement to PB calculation17 but the slow calculation 

limits this from extensive use in MD simulation . Additionally, GBMV and GBMV2 uses a sharp 

molecular surface boundary between solute and solvent that leads to unstable numerical 

calculation in long time scale simulation.170 The development of the analytical form of the R6 

model still focuses on small molecule calculation and has not been extensively tested on protein 

simulation.27 

Our work previously focused on improving the accuracy of CFA-based GB-Neck 

model24 by introducing rigorous parameter training and testing for protein simulation.29 Based on 

CFA, effective radii can be approximated by equation 4.15  
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where I is 3D integral defined by    
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 (4.5). r is a vector center at atom i and the 

integral region stays inside the molecule but outside the atom i. ρi is intrinsic radius of ith atom. 

Depending on the type of boundary between solute and solvent, integral region could be 

molecular volume (IMS) or Van der Waals volume (Ivdw). Van der Waals (VDW) volume 

approach is more favorable because it is expensive to calculate effective radii using molecular 

volume.14 Hawkins et al. followed VDW approach and introduced pairwise approximation to 

analytically calculate the effective radii (GB-HCT model).21 
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     is approximated by summing all individual integrals contributed by atom j ≠ i. To avoid the 

overestimation of     ,   a set of scaling factor Sx (x = H, C, N, O, P, S …) was introduced 

(ρ     ρ ). However this approach neglects the interstitial region between atoms, which 

leads to underestimates of the effective radii for deeply buried atoms, in contrast to PB 

calculation, which uses molecular surface to define the solute/solvent boundary.23 Onufriev et al. 
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introduced additional set of parameters (α, ß, γ) to empirically scale up the effective radii of 

those atoms (GB-OBC model).23 
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where ρ̃  ρ        ,   ρ̃      . Mongan et al. later added       correction to      to 

mimic the molecular surface boundary                  (GB-Neck model).24       is easily 

approximated following Mongan et al. approach.24 The   term can be re-calculated by   

ρ̃       . To minimize the overlap of ―neck‖ region, a scaling neck factor Sneck was 

introduced. The GB-Neck model is theoretically better than the GB-OBC and GB-HCT models, 

but it was shown to quickly unfold the native structure in either protein or nucleic acid MD 

simulation.24, 36, 49 We previously redesigned the training set and test set and performed more 

rigorous refitting GB-Neck parameters for protein. The new parameter set, named GB-Neck2, is 

better than previous models (GB-OBC, GB-Neck) in reproducing PB solvation energy and 

reproducing explicit solvent MD data such as secondary structure content.  

Following the success of GB-Neck2 model for protein simulation, we also made [α, ß, γ] 

parameters (introduced by Onufriev et al.23) element-dependent. There are 20 parameters to be 

fitted, which are 5 scaling factors Sx (introduced by Hawkins et al.)21 (with x=H, C, N, O, P) and 

5 sets of [α, ß, γ]x (x=H, C, N, O, P). The offset (introduced by Still et al.15) and Sneck parameter24 

are kept to be identical to the values in GB-Neck2 model so that both nucleic acid and protein 

parameters can be combined in protein/nucleic acid complex MD simulation.  

4.2.2 Fitting procedure 
4.2.2.1 Objective function 

Twenty parameters [S, α, ß, γ]x (x=H, C, N, O, P) were treated as variables in the 

objective function (eq. 4.8). Objective function is the sum of weighted normalized root-mean-

square-deviation (RMSD) between GB and PB absolute energy, relative energy and the inverse 

of effective radii for different structure sets. The weighting factors are given to avoid any 

specific structure set bias. They were chosen in the similar way we have done previously.29 

  

              ∑                       ∑                               
 (4.8) 
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Here abs_rmsd and rel_rmsd are absolute and relative energy RMSD, respectively, between GB 

and PB calculations. rad_rmsd is the RMSD between the inverse of GB and PB effective radii. 

          and    are weighting factors for abs_rmsd, rel_rmsd and rad_rmsd respectively. 

abs_rmsd, rel_rmsd  are normalized by being divided by the number of atom (natomi) for each 

training set.  

Due to very large number of variables and very expensive objective function, we were 

seeking the best local minimized function values rather than the global value. The local 

optimization method NEWUOA173 was chosen for objective function minimization because of 

its quick convergence compared to other local optimization methods.174 Additionally, NEWUOA 

is an improved version of UOBYQA80 which was successfully used for refitting protein 

parameters in our previous work.  To make sure  we get the best result as we can, a total of 

~2400 optimization runs were carried out for each round of fitting; each optimization run started 

from a random guess in the following boundary Sx   [0.0, 2.0], [αx, βx, γx]   [0.0, 5.0] where x = 

H, C, N, O, P. Weighting factors for radii and relative energies are also varied relative to 

absolute energies to see how they affect the fitting (wr = 1.5, 2.5, 5.0; wrel = 5.0, 10.0; wabs = 1.0). 

There are 5 rounds of fitting in which later round has more structures in training set, designed by 

the following protocol. 

 

4.2.2.2 Training set for parameter fitting: To avoid over fitting due to a large number of 

parameters, we include as many structure variations as possible in training. We followed the 

iteratively designing procedure: (i) We first trained parameters by using only DNA duplex 

structures from the older GB models (GB-HCT,21 GB-Neck24) and TIP3P MD simulations. The 

initial training has 200 structures, which were equally extracted from 10 ns MD simulations at 

300 K in TIP3P and GB-HCT, starting from both canonical A and B forms and 1 ns MD 

simulations of GB-Neck2 starting from A-form. This initial training set was designed to have 

both ‗good‘ (associated DNA dimer strands from TIP3P and GB-HCT MDs) and ‗bad‘ 

(dissociated DNA dimer strands from GB-Neck MD) so that the new GB model does not bias 

any specific structure. However, the newly optimized parameter set from this original training set 

favor different compacted structure with wrong H-bond pattern from its own MD starting from 

canonical DNA A-form. We observed similar trends while optimizing our protein solvation 

model29 and this was overcome by iteratively increasing the training set‘s size: After each round 
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of fitting, we performed 0.5 to 1.0 μs MD simulations for DNA and RNA structures in training 

set, we then equally extracted 50 to 100 structures from MD runs and introduced them into 

training set. The objective function was then minimized again with the new updated structure set. 

This procedure is repeated until the rel_rmsd difference between two consecutive fitting rounds 

is small (<2% of rel_rmsd of the former fitting round). Final training set has structures which 

were from TIP3P, GB-HCT, GB-Neck and GB inter-parameter set MD simulations. 

Since the optimizations are expensive and needed several rounds of fitting each round 

includes: (i) calculating expensive PB energies, (ii) refitting the parameters, (iii) running long 

MD simulation (0.5 to 1 μs), (iv) adding resulting structures from the new simulations to training 

set. We chose a small size 10-base pair DNA (CCAACGTTGG)2 and its complementary RNA 

(CCAACGUUGG)2 duplex for training energy.  These training sets are named dnadup and 

rnadup, respectively.  Both of these DNA and RNA duplexes have base types (A, T, C, G or U) 

and are each long enough to form a complete duplex. Traditionally they were also extensively 

studied in GB simulation.4, 169a, 169b, 175 The A and B-forms of DNA duplex (CCAACGTTGG)2
  

were used for training effective radii (this set is named dnadupRad). The diversity of training sets 

are shown in supplement. 

 

4.2.2.3 Test set for comparing solvation energy between GB and PB 

Following our previous work on proteins, we also designed two types of structure sets to 

test the transferability of the new GB parameters. Type I test set has all the structures in training 

and the structures from MD simulation using the final GB parameters. This test set was designed 

to check if the final GB parameters did not bias any structures coming from its own MD 

simulation. Type I have dnadup_plus150 (adding 150 structures that were equally extracted from 

0.75 μs MD simulation of DNA duplex (CCAACGTTGG)2 using the final GB parameter set to 

dnadup) and rnadup_plus200 (adding 200 structures that were equally extracted from 1.0 μs MD 

simulation of RNA duplex (CCAACGUUGG)2 using the final GB parameter set to rnadup).  

Type II test set has structures with sequences different from the training set. Each test set for 

nucleic acid duplexes has structures coming from TIP3P MD simulations at 300K and from 

intermediate GB model developed during this project. Test set type II has structures of the 

Dickerson-Drew dodecamer DNA duplex (CGCGAATTCGCG)2
176 (DNA DD) and its 

complementary RNA duplex (CGCGAAUUCGCG)2 which are two popular DNA and RNA 
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models for experimental and computational studies .177 We also used structures from the GCC-

box binding domain in complex with DNA (PDB ID: 1GCC178) for testing the combination of 

GB-Neck2nu parameters for nucleic acid (this work) with GB-Neck2 parameters for protein.29 

1GCC test set includes structures from 300 K and 500 K TIP3P simulations. High temperature 

was used to get the structure variety.  

To avoid lengthy description, we characterize the training sets and test sets by their 

RMSD to their experimental structures and give further detail in the supplement. 

 

4.2.2.4 Test set for MD simulations 

Comparing the agreement between GB and PB calculation is only initial step to justify 

the performance of a GB model. We first test if GB-Neck2nu is able to maintain stable 

DNA/RNA duplex and DNA/protein complex that was not seen in GB-Neck model.24, 36 We also 

further test the stability of non-duplex system such as DNA quadruplex. Besides testing the 

structural stability, we also tested structural conversion, such as A to B form DNA, B to A form 

RNA. The folding of DNA/RNA hairpin and the process of ligand binding to minor groove of 

DNA duplex are also tested to show that GB-Neck2nu is suitable for various systems and 

applications beyond canonical duplexes. The summary of testing systems is given in table 4.S3. 

Since GB-Neck model is infamous for destabilizing the duplex, we will test if GB-

Neck2nu can keep DNA and RNA duplexes stable. Our structure stability testing will be 

compared to the available TIP3P simulation data (either from our own simulations or from 

previous work given in corresponding citation). The testing structures include DNA duplex 

(CCAACGTTGG)2 and RNA duplex (CCAACGUUGG)2 which were used in training 

parameters. It also includes popular Dickerson-Drew dodecamer (DD) DNA duplex 

(CGCGAATTCGCG)2 and RNA duplex (CGCGAAUUCGCG)2. Besides those structures, we 

further tested the longer DNA sequence (CTAGGTGGATGACTCATT)2 (corresponding to 

―seq2‖ in Pérez et al.179). We also further tested for protein/nucleic acid complex simulation by 

choosing a protein/DNA complex system (PDB ID: 1GCC178). There are two runs for all DNA 

and RNA duplexes (except seq2 DNA) starting from both canonical A and B forms. The lengths 

of MD simulations in GB-Neck2nu are between 50 ns (Protein/DNA complex) to 1 μs, while 

TIP3P MD length is from 50 ns (Protein/DNA complex) to 100 ns.  Since DNA and RNA 

duplexes were previously reported to be stable in μs timescale in TIP3P MD simulation with 
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bsc0 force field177 (DNA) and bsc0χOL3
180 (RNA), we only performed short MD simulations (100 

ns) for TIP3P explicit solvent.  

 We also tested the folding of DNA and RNA hairpin. Our goal in developing a GB model 

is not just focusing on keeping DNA/RNA duplex stable, but also applying it to MD simulation 

of the system with large structural change, which requires lots of water molecules in explicit 

solvent. GB simulation‘s speed does not depend on the shape of the system. We choose a small 

DNA and RNA hairpin for testing the conformation change. Besides performing simulations for 

GB-Neck2nu, we did additional runs for GB-HC T model.21 This model was developed 20 years 

ago and it is the foundation of later pairwise models (e.g. GB-OBC, GB-Neck, GB-Neck2). GB-

HCT has been shown for strongly biasing compacted structure in protein MD simulations. 31 

However, it is still being used for  simulating  DNA duplexes, RNA duplexes, and hairpin 

structures, since this model can keep duplexes stable.36 We hypothesized that this GB model 

would still bias more compacted structures (compared to native one) in long time scale 

simulations of nucleic acid and the stability of duplex simulation in GB-HCT is just kinetically 

trapped. We chose a small DNA and RNA hairpin systems to test our hypothesis. We will test if 

two models can correctly predict the experimental structure of the hairpin. DNA hairpin with 

GCA loop (sequence GCGCAGC, PDB ID of its homologue: 1ZHU)181 will be used as testing 

systems. This system is small enough to enable us to have very long μs simulations to observe 

the structural changes. This DNA hairpin was also successfully folded (to 1.5 Å heavy atom 

RMSD to NMR structure) from TIP3P simulation.182 We also tested the folding of a RNA 

hairpin UUCG loop (PDB ID: 2KOC,183 sequence GGCACUUCGGUGCC) with 5 base pairs in 

the stem. This hairpin system was shown to be stable in explicit solvent simulation in explicit 

solvent simulation.180a 

Having more accurate implicit model for nucleic acids also opens the door to ligand 

binding calculations, often performed in protein-ligand studies.184 Here we also show an example 

of how a ligand is able to diffuse into the correct binding site of the Dickerson-Drew dodecamer 

(PDB ID: 1D30).  
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4.2.3 PB calculation 
We used similar input from our previous parameterization  of proteins for PB solvation 

energy and ‗perfect‘ radii calculation.29 The mbondi2 radii23 was used to define the boundary 

between solute/solvent for all PB calculations. 

 

4.2.4 Simulation protocol 
4.2.4.1 Basic setup 

Popular force field 99SB57 was used for protein while force field bsc0177a was used for 

DNA and bsc0χOL3
180 was used for RNA simulations. Canonical A and B-forms of DNA and 

RNA duplexes were built by NAB program in Ambertools 12.168 Topologies and coordinates for 

MD simulations were generated by LEaP.168 All MD simulations were carried out by using either 

sander or pmemd program in Amber version 12 or 14.111, 168 Long μs MD runs were performed 

with pmemd GPU version.48 Amber code was modified to accept new GB parameters. The 

combination of GB protein parameters (GB-Neck2)29 with GB nucleic acid pars can be accessed 

by specifying igb = 8 in Amber 14 or later version. Before production run, all simulations 

followed this protocol: (i) minimizing structure, (ii) equilibrating. MD simulations were 

performed at 300 K with time step of 2 fs. SHAKE was used to constrain bonds having 

hydrogen. GB simulations used Langevin thermostat with no cutoff while TIP3P simulations 

used Berendsen thermostat88 with Particle Mesh Ewald (PME) method89 for long range 

interaction with cutoff of 8 Å. Systems in explicit solvent simulation were solvated by a TIP3P 

truncated octahedron box with a buffer size of 10 Å. Since there was no explicit ion in GB 

simulation, we did not include ion in TIP3P simulations to have a more direct comparison. 

However, the TIP3P trajectories from other groups used ion. The details of TIP3P simulation 

was given in the corresponding citation.  All GB-Neck2nu MD simulations used mbondi2 radii23 

for nucleic acid and mbondi329 for protein. Radii set mbondi3 is a small adjustment of mbondi2 

for GB-Neck2 to correctly reproduce the TIP3P PMFs of salt bridge profile of Arg (and Lys) and 

Glu (and Asp).29 For nucleic acid, mbondi3 should be identical to mbondi2. GB-HCT MD used a 

suggested mbondi radii set with offset = 0.13.4  

We performed MD simulation for all tested structures except the RNA hairpin UUCG 

loop. This structure has 5 base pairs in the stem and is very stable in MD simulation (data not 

shown). We then used replica exchange molecular dynamics (REMD)2 simulation to accelerate 
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the sampling for this system. Each run has 6 replicas (3-4 μs/replica) with temperature of [300.0, 

317.0, 334.9, 353.9, 373.9, 395.1] to give acceptance ratio of 0.25. Exchange was attempted 

every 1 ps. Simulations started from both NMR structure and A-form conformations.  

 

4.2.4.2 Equilibration 

In GB equilibration, the starting structures were first minimized in 500 steps and then 

were heated from 100 K to 300 K with 10.0 kcal/mol/Å2 atomic positional restraints on heavy 

atoms. In the next 3 steps (250 ps each), the temperature was kept at 300 K and the restraint 

force constant was reduced from 10.0, 1.0 to 0.1 kcal/mol/Å2. In TIP3P equilibration, the 

solvated structure was minimized in 10000 steps, then was heated from 100 to 300 K in NVT 

ensemble, then was equilibrated in NPT ensemble with 100.0, 10.0, 1.0 and 0.1 kcal/mol/Å2 

positional restraints for heavy atoms in next four 250ps-steps. Production runs were performed in 

NVT ensemble. 

 

4.2.4.3 Ligand binding simulation 

Ten MD simulations were performed for DNA DD with its ligand 6-amidine-2-(4-

amidino-phenyl) indole (DAPI) (PDB ID: 1D30185). General Amber force field (GAFF)186 with 

AM1-BCC charge model187 was used for ligand. The ligand topology was prepared by 

Antechamber188 in Ambertools 12.168 Initially ligand was taken out of its binding site in DNA 

minor groove with O2 (DT7) - HN1 (DAPI) distance 36 Å. Distance O2 (DT7) - HN1 (DAPI) is 

chosen to monitor the binding process since O2 (DT7) - HN1 (DAPI) forms H-bond in X-ray 

structure. To avoid ligand diffusing far away from DNA, a distant restraint (force constant of 0.1 

kcal/mol/Å2) was applied if the distance between P (DA18) and C2 (DAPI) is larger than 100 Å 

(which is 2 times longer than DNA length). 

 

4.2.4.4 Data analysis 

Backbone RMSD (BB-RMSD) calculation and cluster analysis were carried out by the 

ptraj and cpptraj189 program in Ambertools version 12 and 14.111, 168 Cluster analysis used means 

algorithm with BB-RMSD as metric. The whole trajectory for each simulation was grouped into 

50 clusters. Backbone atoms in DNA/RNA are defined as heavy atoms in the phosphate group 

and in the sugar pucker. Heavy atoms in the ligand are considered as back bone atom. DNA and 
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RNA helical parameter analysis were performed by CURVES+ program (version 1.31).190 The 

major and minor groove width in the outputs from CURVES+ were added 5.8 Å to account for 

the P diameter as suggested.190 The H-bond fraction is defined as the ratio between the number 

of H-bonds of each trajectory frame and the starting structure. Average of H-bond fraction is 

endcalculated for whole trajectory. The number of H-bond for each base pair was calculated by 

using ―nastruct‖ command in cpptraj.189  

4.3 Result and Discussion 

4.3.1 Parameter fitting 
Our goal is to extend and re-optimize the parameters for GB-Neck model using PB 

solation energy (absolute energy and relative energy between structure pair) and ‗perfect‘ radii as 

benchmark. We designed the objective function as the sum of weighted contribution from energy 

and effective radii RMSD between GB and PB calculation similar to our previous work for 

protein parameters.29 A total of ~2400 optimization runs were performed for minimizing 

objective function with 6 combinations of weighting factor (wr = 1.5, 2.5, 5.0; wrel = 5.0, 10.0; 

wabs = 1.0) for each round of fitting. Each optimization started from a random guess within the 

boundary given in method section. We stopped minimization runs after 5 rounds when  obtaining 

close error between the old training set (in 5th round) and the new training set (in 6th round) 

(figure 4.S2). 

Among 6 weighting factor combinations, we chose the optimized parameters from (wr = 

2.5, wrel = 5.0, wabs = 1.0) as our final candidate since this combination gave the best compromise 

between having low error for both energy and effective radii (table 4.S4). Those weighting 

factors are different from the ones in protein training,29 reflecting the difference in training set 

size, charge … between protein and nucleic training set. The results for the top 10 optimization 

runs for (wr = 2.5, wrel = 5.0, wabs = 1.0) are given in table 4.S1. The final parameter set was 

named GB-Neck2nu parameters and they are given in table 4.1.  

 

 

 

 

 



 

167 
 

Table 4.1. GB parameters after training for GB-Neck2nu 
 
Parameter Value Parameter Value 

SH 1.697 αN 0.686 

SC 1.269 βN 0.463 

SN 1.426 γN 0.139 

SO 0.184 αO 0.606 

Sp 1.545 βO 0.463 

αH 0.537 γO 0.142 

βH 0.363 αP 0.418 

γH 0.117 βP 0.290 

αC 0.332 γp 0.106 

βC 0.197   

γC 0.093   

 

Table 4.2 shows the abs_rmsd, rel_rmsd and rad_rmsd for individual training set. The 

results are compared to GB-Neck model to show the improvement. GB-Neck2nu reduced about 

80% error for absolute energy and reduced 65% and 15% for relative energy of dnadup and 

rnadup, respectively. Figure 4.S1 shows the energy comparison for individual structures in 

dnadup training between GB (GB-Neck, GB-Neck2nu) and PB. GB-Neck2nu has better 

agreement to PB for each structure, while GB-Neck underestimates energies for most of the 

structures. GB-Neck only has close energy to PB calculation for more extended structures 

(having large RMSD to both A and B-form DNA). The same trend is also observed for rnadup 

training set (figure 4.S4). 

The effective radii errors are also reduced to 34% and 49% (compared to the original GB-

Neck model) for A and B forms of the dnadupRad training set. Figure 4.S8 shows better 

correlation between GB-Neck2 effective radii and PB ‗perfect‘ radii than the ones in the GB-

Neck model. GB-Neck tends to overestimate effective radii for most atoms. This trend is also 

observed in the protein set.29 

 

Table 4.2. abs_rmds, rel_rmsd aand rad_rmsd for individual training set. %reduced_error shows 
degree of improvement of GB-Neck2nu compared to GB-Neck, defined by %reduced_error  = 
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100*(rmsdGB-Neck-rmsdGB-Neck2nu)/rmsdGB-Neck where ―rmsd‖ is either abs_rmsd, 
rel_rmsd, rad_rmsd or obj_funct. ―natom‖ is the number of atoms for each structure in the 
training set. Weighting factor ―w‖ is also shown for each set.  

 

 

Solvation energy rmsd 
(kcal/mol) 

Inverse of effective radii 
rmsd 
(1/Å) 

obj_funct 

dnadup rnadup A-form B-form 

abs_rmsd 
w = 1.0 
natom = 

632 

 
rel_rmsd 
w = 5.0 
natom = 

632 

abs_rmsd 
w = 1.0 
natom = 

640 

 
rel_rmsd 
w = 5.0 
natom = 

640 

 
rad_rmsd 
w = 2.5 
natom = 

632 

rad_rmsd 
w = 2.5 
natom = 

632 
GB-Neck 68.3 29.5 144.6  13.8 0.068 0.075 0.850 

GB-Neck2nu 14.0  10.3 25.4 11.7 0.045 0.038 0.338 

%reduced_error 80%  65% 82% 15% 34% 49% 60% 

 

4.3.2 Improving solvation energy and effective radii calculation: Comparison between GB 
and PB calculation 
4.3.2.1 Effective radii comparison 

We trained effective radii for only A and B forms of DNA duplex (CCAACGUUGG)2 

and it is of interest if the improvement for those structures will translate to other nucleic acid 

structures, such as protein/nucleic acid complexes, or other DNA and RNA duplexes or non-

duplexes. We chose 8 systems to test this. Two of them are DNA duplex (CGCGAATTCGCG)2 

in A and B forms. Four of them are RNA duplexes in A and B forms. We also tested a DNA 

quadruplex (PDB ID: 1L1H191) and a protein/DNA complex (PDB ID: 1GCC). Table 4.3 shows 

the RMSD of the inverse of effective radii (GB) and the inverse of ‗perfect‘ radii (PB). Overall 

GB-Neck2nu modestly improved the radii. For example, rad_rmsd of A-form RNA 

(CCAACGUUGG)2 is 0.051 for GB-Neck2nu and 0.069 for GB-Neck model.  

The only special case GB-Neck2 out-performs GB-Neck is for B-form RNA. GB-Neck 

strongly overestimates the effective radii of B-form RNA while GB-Neck2 has better agreement 

to ‗perfect‘ radii (figure 4.1). In this case, GB-Neck2nu reduced 65% of error from GB-Neck 

model. Manually inspecting the effective radii calculated from GB-Neck reveals that this model 

overestimates the effective radii for group of atoms that are close to HO2‘ atoms. We do not see 

this strong overestimation for those atoms in A, B form DNA and A form RNA since those 

structures are less compacted than B-form RNA. There are several reasons showing GB-

Neck2nu performs better than GB-Neck for B-form RNA. Firstly, GB-Neck parameters were not 
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trained for nucleic acid while we explicitly trained GB-Neck2nu parameters. Secondly we 

followed the iterative process of designing training set (as described in Method section) where 

‗bad‘ structures (either with broken H-bond or very compacted structure) were also included.  

 

Table 4.3. RMSD between the inverse of GB effective radii and the inverse of PB ‗perfect‘ radii 
(1/Å) 

 
GB-Neck GB-Neck2nu %reduced_error 

A-form DNA (CGCGAATTCGCG)2 0.05 0.05 
 

0% 

B-form DNA (CGCGAATTCGCG)2 0.05 0.04 
 

20% 

A-form RNA (CCAACGUUGG)2 0.07 0.05 
 

30% 

B-form RNA (CCAACGUUGG)2 0.11 0.04 
 

64% 

A-form RNA (CGCGAAUUCGCG)2 0.07 0.05 
 

29% 

B-form RNA (CGCGAAUUCGCG)2 0.11 0.04 
 

64% 

DNA G-quadruplex (PDB ID: 1L1H) 0.07 0.06 
 

14% 

DNA-protein complex (PDB ID: 1GCC) 0.07 0.06 
 

14% 
 

 
 

Figure 4.1. Comparison of inverse of effective radii between GB-Neck (top), GB-Neck2nu 
(bottom) and inverse of PB ―perfect‖ radii for A and B forms of DNA duplex 
(CGCGAATTCGCG)2, A and B forms of  RNA duplex (CGCGAAUUCGCG)2. The red line in 
each subplot indicates the ideal agreement between GB and PB effective radii. 
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4.3.2.2 Solvation energy comparison  

To test the transferability of GB-Neck2nu parameters for solvation energy calculation 

from training to test set, we compared abs_rmsd, rel_rmsd for test set type I, named 

dnadup_plus150 and rnadup_plus200 (adding more structures from 0.75-1 μs MD simulation 

using the final parameters to the current training set) and type II (having sequences that are not in 

used in training). The test set type II include structures of DNA duplex (CGCGAATTCGCT)2, 

RNA duplex (CGCGAAUUCGCG)2 and  protein/DNA complex 1GCC. Table 4.4 shows the 

abs_rmsd and rel_rmsd for different test sets. For test set type I, the abs_rmsd and rel_rmsd for 

dnadup_plus150 and rnadup_plus200 are similar to the training set dnadup and rnadup. For 

example abs_rmsd of dnadup and dnadup_plus150 are 68.3 and 70.8 kcal/mol respectively. This 

indicates that there is no new structure in MD simulation using the final parameters; adding more 

structures from this simulation and redo the fitting does not improve the agreement between GB 

and PB. 

For test set type II, both absolute and relative energy RMSD are significantly reduced in 

GB-Neck2nu as compared to GB-Neck model. Specifically, the abs_rmsd is about 69 to 85 % 

reduced and the rel_rmsd is about 18 to 26% reduced. The abs_rmsd and rel_rmsd are also 69% 

and 18% reduced for 1GCC protein/DNA complex, although we have not included it in training. 

The comparison between GB and PB energies for individual structures of 3 test sets are also 

given in supplements. 

 

Table 4.4. abs_rmsd, rel_rmsd for test set type I and II. We applied the original GB-Neck 
parameters for both protein and DNA (RNA) for this model. 
 

 
Test set name 

GB-Neck GB-Neck2nu %reduced_error 
 
abs_rmsd 
 

 
rel_rmsd abs_rmsd 

 

 
rel_rmsd abs_rmsd 

 

 
rel_rmsd 

Type I 
dnadup_plus150 70.8  26.2 16.4 10.7 77% 59% 

rnadup_plus200 144.3 11.1 21.5 10.4 85% 6% 

Type 
II 

DNA duplex 
(CGCGAATTCGCG)2 

104.2 
 

17.8 15.3 
 

13.6 85% 
 

24% 

RNA duplex 
(CGCGAAUUCGCG)2 

177.4 
 

13.3 29.9 
 

9.9 83% 
 

26% 

Protein/DNA complex 
1GCC 

126.0 
 

23.3 39.2  
 

19.1 69% 
 

18% 
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4.3.3 Improving structural stability 
We have shown that GB-Neck2 reduces the abs_rmsd and rel_rmsd compared to the 

original GB-Neck model if PB energies are used as benchmark. Since the original GB-Neck 

breaks all H-bond in DNA duplex simulation,36 we will further test if better performance of GB-

Neck2nu in energy calculation could result better structural stability in MD simulation. We 

performed very long MD simulation (1 μs) GB-Neck2nu with different DNA and RNA duplexes 

as well as a protein/DNA complex. The structural stability from GB-Neck2nu is compared with 

TIP3P MD (0.05-0.1 μs). There are 6 tested systems. Two of them are used for training GB-

Neck2nu (DNA duplex (CCAACGTTGG)2, RNA duplex (CCAACGUUGG)2). Three of them 

are used for comparing GB and PB energies (DNA duplex (CGCGAATTCGCG)2, RNA duplex 

(CGCGAAUUCGCG)2 and protein/DNA complex 1GCC). We also tested a longer DNA 

sequence (DNA duplex 18 basepair) that has a long TIP3P MD trajectory (100 ns) from Pérez et 

al.179 This DNA duplex corresponds to ―seq2‖ in their paper.  

Table 4.5 shows the average of H-bond fraction (defined in method section) in GB-

Neck2nu and TIP3P MD simulation. Within 1 μs simulation time, GB-Neck2nu can maintain 83 

to 97% of H-bond for our tested DNA (RNA) duplex and DNA/protein complex system if all 

base pairs are included in calculation. TIP3P simulation can maintain 95 to 98 % H-bond (100 ns 

length).  

Since we see the defraying of terminal base pair in both TIP3P and GB simulations, we 

also compared H-bond fraction by excluding one base pair in each terminal. Without the 

defraying base pairs, TIP3P can maintain almost 100% of H-bond while GB-Neck2nu can 

achieve 91 to 98% of H-bond. For first 4 DNA and RNA sequences with C-G terminal base pair, 

GB-Neck2 can achieve 97 to 98 % H-bond. For DNA sequence with terminal A-T base pair 

(DNA seq2 and DNA/protein complex 1GCC), the H-bond fraction is somewhat lower with 

91%, which is 8% smaller than TIP3P MD (99%). If all A-T base pairs that are close to the 

terminal base pairs are excluded (last 3 base pairs in DNA seq2 and first 2 base pairs in 

protein/DNA complex), the H-bond fraction is almost 100 % for GB-Neck2nu (table 4.5). 

The lower H-bond fraction for DNA (RNA) system with A-T terminal base pair indicates 

that H-bonds in this base pair are still weak. However we observe the same trend in TIP3P MD 

with lesser defraying degree. More quantitative benchmark, such as comparing H-bond PMF 

between GB and TIP3P MD, should be focused on future research. The weak H-bond problem 
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could be fixed by adjusting the Hydrogen radii by following previous work on both protein and 

DNA simulations.4, 23 

We also report the average BB-RMSD over time to experimental structure between GB-

Neck2nu and TIP3P MD simulation (table 4.7). For 4 DNA and RNA duplexes with one 

DNA/protein complex, the average BB-RMSD difference between GB-Neck2nu and TIP3P is 

only within 1.5 Å except the case of DNA seq 2 (6.7 Å in GB-Neck2nu vs. 4.4 Å TIP3P). For 

DNA seq 2, we want to stress that GB-Neck2nu MD is 1 μs long while TIP3P MD is only 0.1 μs. 

The difference in simulation length and the sampling in implicit (much better)1a and explicit 

solvent might be the reason leading to the significant difference in average BB-RMSD. The 

comparison between representative structure of the most populated cluster in GB-Neck2nu and 

TIP3P MD simulations are also given in figure 4.S13. 

Besides testing the stability of the duplex, we also extend to the quadruplex systems. We 

chose a small DNA G-quadruplex (GGGG)4 (antiparallel strand (aps))177a and a larger system 

four-stranded Oxytricha telomeric DNA (PDB ID: 1L1H). For GB-Neck2nu MDs, the structures 

are stable within the simulation time (1 μs) with very low average BB-RMSD (1.6-1.7 Å). The 

average H-bond fraction is almost 100%. In contrast, two quadruplex systems are not stable in 

TIP3P MD simulation (200-300 ns). The average BB-RMSD is 4.2 to 4.4 Å for both systems and 

most of native H-bonds were lost. Instead TIP3P MD simulations tend to favor different H-bond 

patterns (figure 4.S12). We want to stress that we performed all TIP3P MD simulation without 

ion. The quadruplex systems are shown to be stable in explicit MD simulation if proper ion is 

included.164 For example, with the same DNA G-quadruplex aps system, the average BB-RMSD 

in TIP3P MD with ion is also very low (~1.2 Å) with almost 100% H-bond.177a The source of 

stability of quadruplex in GB-Neck2nu (without explicit ion) is not known yet. One possible 

reason could be that GB-Neck2nu introduces the overestimation of base stacking. The 

overestimation of H-bond is not likely the reason since we just showed that H-bonds in GB-

Neck2nu are still weaker in TIP3P simulation for DNA duplex systems. 
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Table 4.5. Average H-bond fraction in GB-Neck2nu and TIP3P simulation for DNA (RNA) 
duplex and DNA/protein complex. The error is given in parenthesis. The errors are calculated 
from two runs (starting from A and B forms) for first 4 systems. For DNA seq2 and DNA-
protein complex, the errors were calculated from first and second half of the trajectory of single 
MD run. a) For DNA systems having A-T base pairs in the terminal, we also report H-bond 
fraction excluding those base pairs.  

System 

 

TIP3P GB-Neck2nu 

All base 

pairs 

Skip 2 terminal base 

pairs 

All base 

pairs 

Skip 2 terminal base 

pairs 

DNA (CCAACGTTGG)2 94±5 100±1 93±1 98±1 

DNA (CGCGAATTCGCG)2 95±1 100±1 88±1 98±1 

RNA (CCAACGUUGG)2 96±2 98±1 97±1 98±1 

RNA (CGCGAAUUCGCG)2 98±1 98±1 92±1 97±1 

DNA seq2 

(CTAGGTGGATGACTCATT)2 97±1 99±1 83±2 91±1; 98±1 a 

DNA-protein complex  

(PDB ID: 1GCC) 

DNA sequence: (TAGCCGCCAGC)2 95±1 99±1 86±1 91±1 ; 99±1 a 

 

4.3.4 Testing structural conversion 
To further characterize the success of GB-Neck2nu model, we will test if GB-Neck2nu is 

able to reproduce the structural conversion from A to B form for DNA and B to A form for RNA 

from explicit solvent simulation. Those are traditional tests when developing new force field177a, 

180b or testing solvent model.4 The simulations that started from A form DNA and B form RNA 

converge to the B-form DNA and A form RNA, respectively.  

Table 4.7 shows the convergence of A and B forms of DNA (or RNA): MD runs 

converge to the same structural ensemble with similar average RMSD. GB-Neck2 excellently 

reproduces the major and minor width as compared to TIP3P simulation for DNA (table 4.6). 

The minor groove widths from GB-Neck2nu MD for RNA simulations are also similar to TIP3P 

runs. The major grooves in GB-Neck2nu MD simulations for all tested RNA are underestimated 

about 4 Å as compared to TIP3P MD simulation (~15 Å for GB-Neck2nu and ~19 Å for TIP3P). 
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It is interesting that TIP3P MD simulation with bsc0χOL3 force field overestimates 2.5-3.2 Å  of 

the major groove relative to X-ray and NMR data.180b The combination of GB-Neck2nu and 

bsc0χOL3 perform even better than TIP3P + bsc0χOL3 with similar major groove width (~ 15 

Å). This suggests there is error cancellation between bsc0χOL3 force field and GB-Neck2nu 

solvent model.  

Table 4.6. Groove width of DNA duplex (CGCGAATTCGCG)2 and RNA duplex 
(CGCGAAUUCGCG)2 from GB-Neck2nu and TIP3P MD simulations. There are two runs for 
each solvent model, starting from A and B-forms. Standard deviation for each run is shown in 
parenthesis.  
 

Groove 

width 

(Å) 

DNA (CGCGAATTCGCG)2 RNA (CGCGAAUUCGCG)2 

GB-Neck2nu 

 

 

TIP3P 

 

 

GB-Neck2nu 

 

 

TIP3P 

 

 

Major 18.7±0.1 18.8±0.1 15.1±0.5 19.2±0.1 

Minor 12.8±0.1 12.1±0.1 15.9±0.1 15.1±0.1 
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Table 4.7. Summary of testing structural stability and structural conversion in MD simulations. 
―Stable‖ means getting a low average RMSD to either B form DNA or A form RNA in DNA and 
RNA simulations, respectively. ―Average BB RMSD‖ column uses this format ―RMSD to A-
form (RMSD to B-form)‖ for DNA or RNA duplex simulations. ―A  B‖ or ―B  A‖ shows 
the conversion of A to B form in DNA simulation (starting from A-form) or B to A for in RNA 
simulation (starting from B-form), respectively. The RMSD plots for each system were given in 
supplement. 

System 

Length (ns) 
Average BB RMSD 
(Å) 

 
 
Observation 

GB-Neck2nu 

 
TIP3P 

 
GB-
Neck2nu 

 
TIP3P 

A-form DNA (CCAACGTTGG)2 1000 

 
100 

 
4.3 (4.3) 

 
4.2 
(3.1) 

 
A  B, 
stable 

B-form DNA (CCAACGTTGG)2 1000 

 
100 

 
4.2 (4.3) 

 
4.0 
(3.1) 

 
Stable 

 
A-form DNA (CGCGAATTCGCG)2 1000 

 
100 

 
5.2 (4.2) 

 
5.3 
(3.0) 

 
A  B, 
stable 

B-form DNA (CGCGAATTCGCG)2 1000 

 
100 

 
5.2 (4.2) 

 
5.4 
(2.9) 

 
Stable 

A-form RNA (CCAACGUUGG)2 
 

 
1000 
 

 
100 

 
2.1 (6.1) 

 
2.8 
(5.6) 
 

 
Stable 

B-form RNA (CCAACGUUGG)2 1000 

 
100 

 
2.2 (6.4) 

 
2.8 
(5.5) 

 
B  A, 
stable 

A-form RNA (CGCGAAUUCGCG)2 
 

 
1000 
 

 
100 

 
2.3 (6.7) 

 
3.6 
(6.3) 

 
Stable 

 
B-form RNA (CGCGAAUUCGCG)2 

 
 

1000 
 
 

 
100 
 

 
2.7 (6.7) 
 

 
3.7 
(5.8) 
 

 
B  A, 
stable 
 

B-form DNA seq2 
(CTAGGTGGATGACTCATT)2 1000 

100 
(Perez et 
al.179) 

 
6.7 

 
4.4 

 
Stable 

DNA quadruplex (GGGG)4 1000 200 1.6 4.4 Stable 

DNA quadruplex (GGGGTTTTGGGG)2 
(PDB ID: 1L1H) 1000 

300 1.7 4.4  Stable 

 
DNA-protein complex (PDB ID: 1GCC) 
 

 
50 
 

 
50 

 
2.7 

 
2.4 

 
Stable 
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4.3.5 Folding DNA and RNA hairpin 
We have shown that GB-Neck2nu is able to maintain stable DNA and RNA duplexes and 

is able to reproduce the structural conversion from A to B form for DNA and B to A form for 

RNA. The conversions in DNA and RNA duplexes are just small arrangement, so we further test 

larger conversion, specifically testing the folding DNA GCA hairpin loop and RNA UUCG 

hairpin loop. We also compare GB-Neck2nu MD/REMD simulations to GB-HCT simulations 

since this model has been used widely for DNA and RNA simulations.36, 169a, 175  

 For the DNA hairpin GCA loop (PDB of its homologue: 1ZHU), all GB MD simulations 

started from both NMR and B form conformations. In GB-HCT simulation starting from NMR 

structure, the native conformation was maintained for ~1 μs but it adopts different compacted 

structure (Figure 4.2) for another 6 μs (BB-RMSD of 3.0 Å). The B-form GB-HCT simulations 

also converged to the same misfolded structure. No refolding event is observed in GB-HCT 

simulations. Multiple folding/unfolding events appear in GB-Neck2nu MD simulations (Figure 

4.2). The folded structure from this simulation has remarkably low BB-RMSD to NMR structure 

(1.2 Å).  Those results are consistent with previous observations in protein folding simulation, in 

which GB-HCT favors more compacted structures.31, 54  

 

 

Figure 4.2. DNA GCA hairpin loop MD simulation, starting from B-form and NMR structures. 
(A) Backbone RMSD evolution for GB-HCT simulation, starting from native structure (red) and 
B-form conformation (black). (B) Backbone RMSD evolution for GB-Neck2nu simulation, 
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starting from B-form conformation. (C) Misfolded structure from GB-HCT simulation. (D) 
Overlap between experimental structure (grey color) and representative structure of the most 
populated cluster from GB-Neck2nu simulation. Only the simulation that started from B-form of 
GB-Neck2nu MD is shown since we observed multiple folding/unfolding events in this run. 

 

We next test the folding of the RNA hairpin UUCG loop (PDB ID: 2KOC183). Since this 

hairpin has 5 base pairs in the stem, the structure is very stable in MD simulation (our 

preliminary result). To accelerate the folding/unfolding, we performed REMD run for each GB 

model (GB-HCT and GB-Neck2nu), starting from both NMR and A-form conformation. GB-

HCT again favors different compacted structure (BB-RMSD to NMR structure: 8.6 Å) while 

GB-Neck2nu is able to fold to a structure similar to NMR structure with BB-RMSD of 1.9 Å and 

stem BB-RMSD of 1.1 Å. The loop geometry of the hairpin in GB-Neck2 simulation however is 

not correctly folded (figure 4.3).  

 

Figure 4.3. RNA UUCG hairpin loop REMD simulation starting from A-form and NMR 
structures. Only 300 K trajectories are shown. (A) Backbone RMSD versus time from GB-HCT 
simulation. (B) Backbone RMSD versus time from GB-Neck2nu simulation. (C) Misfolded 
structure from GB-HCT simulation in REMD run starting from NMR structure. (D) Folded 
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structure from GB-Neck2nu MD simulation. (E) Experimental structure (PDB ID: 2KOC183). For 
clarity, only heavy atoms are shown. 
 

4.3.6 Reproducing ligand binding to DNA duplex 
We have shown GB-Neck2nu can qualitatively reproduce the minor and major groove 

width of DNA duplex compared to TIP3P simulation. We then tested if this agreement could 

help GB-Neck2nu reproduce the binding of the ligand to the minor groove of DNA since the 

binding of ligand to its binding site is sensitive to minor groove‘s width.192 We choose the 

complex of Dickerson-Drew dodecamer DNA duplex (CGCGAATTCGCG)2 and its ligand 

DAPI for testing (PDB ID: 1D30). We performed 10 MD simulation runs (1.5-3 μs per run) in 

which the ligand was taken out of the binding site from X-ray structure. The initial ligand 

position is arbitrarily chosen (with O2 (DT7) - HN1 (DAPI) distance of 36.0 Å vs. 2.2 Å in X-

ray structure). Ten different MD runs have different random starting velocities. In all the 

simulations, the ligand can bind to the minor groove within only 100 ns. Seven of 10 runs can 

sample correct binding site (justified by correctly reproduce the native hydrogen bond in crystal 

structure between HN1 (DAPI) and O2 (DT7) within our simulation time. Figure 4.4 shows one 

of examples of the binding process, illustrated by the BB-RMSD to the complex, BB-RMSD to 

only DNA and by the distance between HN1 (DAPI) and O2 (DT7). The representative structure 

of the closest cluster has HN1 (DAPI) and O2 (DT7) distance of 2.7 Å which the close to the 

distance in X-ray structure (~2.2 Å). The most populate cluster does not have native H-bond 

between HN1 (DAPI) and O2 (DT7), however the ligand still stays inside the minor groove 

(figure 4.4). The ligand binding process for all 10 MD runs are given in figure 4.S14. 

There are several reasons that made the most populated cluster not to have correct 

binding site for ligand. First we used very-approximated GAFF parameters with AM1-BCC 

charge model for quickly testing our prediction. More careful force field development for DAPI 

ligand should investigated if one wants to get more accurate result. Secondly, the force field bsc0 

for DNA was shown to produce wider minor groove in MD simulation than in experiment.36 The 

wider minor groove width might weaken the tight binding in experimental structure.  
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Figure 4.4. (A) Starting structure for GB-Neck2nu MD simulations of ligand binding. The 
ligand was initially taken out of its binding site in DNA minor groove. The initial distance of O2 
(DT7) - HN1 (DAPI) is 36 Å. (B) Backbone RMSD and O2 (DT7) - HN1 (DAPI) distance 
versus time from GB-Neck2nu simulation. The overlapping of BB-RMSD to the complex and to 
only DNA in the plot indicates the ligand stays inside the minor groove after finding its binding 
site. (C) Crystal structure (PDB ID: 1D30185) of the complex between DNA duplex 
(CGCGAATTCGCG)2 with ligand DAPI. The O2 (DT7) - HN1 (DAPI) distance is 2.2 Å. (D) 
The representative of the closest cluster to crystal structure from GB-Neck2nu simulation. The 
O2 (DT7) - HN1 (DAPI) distance is 2.7 Å. (E) Representative of the most populate cluster from 
GB-Neck2nu simulation. The O2 (DT7) - HN1 (DAPI) distance is 5.3 Å. 
 

4.4 Conclusion 

In this study, we have extended and refitted the GB-Neck model for the MD simulations of 

nucleic acid and its complex with protein. The fitting reduces 70%-80% error for absolute energy 

and 15% to 65% for relative energy calculation from GB-Neck if using PB calculation as 

benchmark. The effective radii calculation is also modestly improved. The improvement in 

energy and effective radii calculation translate for better structural stability for duplex, 

quadruplex and duplex/protein complex simulations. The model is also able to fold DNA and 

RNA hairpin loop and correctly reproduce the ligand binding to its binding site in minor groove 

of DNA. 

We also show that the A-T base pair H-bonds are still weak in GB-Neck2nu simulation. 

Future research will focus on its stability, such as by adjusting atomic radii as done 

previously.169b  
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Appendix 4. Supporting Document 

Table 4.S1. Parameters for first 10 of 600 runs that have the lowest objective function values. 
―Sx < 0‖ means one of the scaling factors is negative while ―Sx > 0‖ means all the scaling factors 
are positive. Three last rows show RMSD between GB and PB energies for dnadup and rnadup 
and the effective radii RMSD for dnadupRad training set. Relative energy RMSD is shown in 
parenthesis. Run #3 and #4 have similar objective functions but they have completely different 
parameters. We chose parameter set #4 as our final set run since it has slightly lower relative 
energies from both training sets and it has all positive scaling factor values (as compared to #1 
and #2). Only absolute energy, relative energy and effective radii RMSD are shown for two best 
runs (#3 and #4). 

 #1 #2 #3     #4 #5 #6 #7 #8 #9 #10 
Pars Sx < 0 Sx < 0 Sx > 0 Sx > 0 Sx < 0 Sx > 0 Sx > 0 Sx < 0 Sx > 0 Sx > 0 
SH -0.556 -0.546 1.175 1.697 0.536 1.225 1.127 1.201 1.211 1.229 
SC 0.920 0.887 0.669 1.269 0.817 0.644 0.611 0.178 0.175 0.095 
SN 1.118 1.083 1.066 1.426 1.065 1.075 0.997 1.011 1.016 1.032 
SO -0.309 0.221 0.184 0.184 -0.333 0.405 0.183 -0.019 0.184 0.184 
Sp 1.500 1.451 1.487 1.545 1.432 1.491 1.418 1.434 1.448 1.476 
αH 1.373 1.359 1.184 0.537 1.241 1.193 1.421 1.368 1.180 1.315 
βH 2.114 2.146 1.592 0.363 1.985 1.575 2.184 2.011 1.503 1.853 
γH 1.338 1.453 1.067 0.117 1.494 1.022 1.543 1.527 1.189 1.375 
αC 0.750 1.165 -0.204 0.332 -0.402 0.789 0.036 0.452 1.198 1.794 
βC -0.384 0.578 -1.198 0.197 -2.769 1.024 -0.826 0.039 1.901 3.236 
γC -0.337 0.223 -0.233 0.093 -1.473 0.934 0.039 0.572 1.673 2.357 
αN 2.361 2.773 1.503 0.686 0.364 2.104 1.944 2.096 2.565 2.905 
βN 2.648 3.843 1.953 0.463 -1.239 3.314 3.055 3.456 4.612 5.418 
γN 1.013 1.772 1.208 0.139 -0.837 1.952 2.000 2.373 3.071 3.511 
αO 1.277 1.234 1.137 0.606 1.898 0.947 1.063 1.294 1.081 1.005 
βO 2.470 2.459 1.937 0.463 4.436 1.381 1.794 2.419 1.814 1.587 
γO 1.918 2.075 1.396 0.142 3.514 0.990 1.464 1.928 1.477 1.277 
αP 1.222 0.812 1.077 0.418 0.612 1.104 1.109 1.234 1.143 1.102 
βP 3.150 2.028 2.321 0.290 0.963 1.782 2.164 1.911 1.776 1.525 
γp 4.847 4.199 3.061 0.106 3.062 2.044 3.197 2.524 2.570 2.202 

obj_funct 0.324 0.327 0.336 0.338 0.339 0.340 0.340 0.349 0.351 0.353 
 

dnadup 
11.6 

(12.7) 
11.6 

(13.0) 
14.8 

(11.4) 
14.0 

(10.3) 
13.6 

(11.8) 
15.6 

(11.8) 
15.8 

(11.7) 
15.5 

(11.8) 
15.8 

(12.2) 
16.1 

(12.5) 
rnadup 9.3  

(9.8) 
9.5 

(10.4) 
24.0 

(12.4) 
25.4 

(11.7) 
14.5 

(10.4) 
25.1 

(12.8) 
24.6 

(12.7) 
25.4 

(12.5) 
24.1 

(12.5) 
23.8 

(12.7) 
dnadupRad 0.046 0.044 0.035 0.041 0.048 0.033 0.037 0.037 0.038 0.037 
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Table 4.S2. Summary of training and test set for GB-Neck2nu 
 

 
Name #structures 

Training set 

dnadup  
(CCAACGTTGG)2 370 

rnadup 
(CCAACGUUGG)2 187 

Type I test set 

dnadup_plus150 
(CCAACGTTGG)2 520 

rnadup_plus200 
(CCAACGUUGG)2 387 

Type II test set 

DNA duplex  
(CGCGAATTCGCG)2 650 

RNA duplex 
 (CGCGAAUUCGCG)2 600 
DNA/protein complex  

1GCC 850 
 

Table 4.S3. Summary of structures used in this study. ―GB vs. PB‖ means the structure was used 
for comparing GB and PB calculation. ―MD simulation‖ means the structure was used for MD 
simulation. ―x‖ mark indicates the structure was used. Blank indicates there is no test. 

System 

System size  
(Number of 

residue) 
Total Charge 

(C) 
GB vs. 

PB 

MD 
simulation 

GB TIP3P 
DNA duplex (CCAACGTTGG)2 20 -18 x x x 

DNA duplex (CGCGAATTCGCG)2 24 -22 x x x 
RNA duplex (CCAACGUUGG)2 20 -18 x x x 

RNA duplex (CGCGAAUUCGCG)2 24 -22 x x x 
DNA duplex 

(CTAGGTGGATGACTCATT)2 36 -24 
 

x x 
DNA G-quadruplex (GGGG)4 16 -12 

 
x x 

DNA G-quadruplex 2 (PDB ID: 
1L1H) 24 -22 x x x 

DNA-protein complex (PDB ID: 
1GCC) 85 -13 x x x 

DNA GCA hairpin loop (PDB: 
1ZHU) 7 -6 

 
x 

 RNA UUCG hairpin loop (PBD: 
2KOC) 14 -13 

 
x 

 DNA and ligand complex (PDB: 
1D30) 25 -22 

 
x 
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Table 4.S4. Comparison of energy and effective radii RMSD between GB and PB for training 
sets with different runs using different weighting factors (wr = 1.5, 2.5, 5.0; wrel = 5.0, 10.0). 
The default wabs is 1.0. We performed 300-600 function minimization runs for each choice. The 
fitting parameters from (wr = 2.5, wrel = 5.0, wabs = 1.0) are chosen as the final parameters 
since they have the best compromise between low energy RMSD and low effective radii RMSD 
to PB calculation. Third and fourth rows show absolute and relative energy RMSD between GB 
and PB. Fifth row shows effective radii RMSD to ‗perfect‘ radii.  

 

Training set 
 

GB-
Neck2nu 

  

 

wr=1.5 
wrel=5.0 

wr=2.5 
wrel=5.0 

wr=5.0  
wrel=5.0 

wr=2.5  
wrel=10.0 

dnadup 18.7 (10.2) 14.0 (10.3) 17.1 (12.5) 14.7  (12.0) 
rnadup 26.4 (11.3) 25.4 (11.7) 29.6 (12.9) 31.1 (11.2) 

dnadupRad 0.051 0.041 0.030 0.050 
 

Table 4.S5. Groove width of DNA duplex (CCAACGTTGG)2 and RNA duplex 
(CCAACGUUGG)2 from GB-Neck2nu and TIP3P MD simulations. There are two runs for each 
solvent model, starting from A and B-forms. Standard deviation for each run is shown in 
parenthesis. Those DNA and RNA duplexes were used for training GB-Neck2nu parameters. 
 

Groove 
width 
(Å) 

DNA (CCAACGTTGG)2 RNA (CCAACGUUGG)2 
GB-Neck2nu TIP3P GB-Neck2nu TIP3P 

A-form B-form A-form B-form A-form B-form A-form B-form 

Major  
18.6 
(2.0) 

18.6 
(2.0) 

18.0 
(1.9) 

18.2 
(1.9) 

15.2 
(3.0) 

15.3 
(2.9) 

19.0 
(2.1) 

19.0 
(2.1) 

Minor  
13.0 
(1.3) 

13.1 
(1.3) 

12.4 
(1.7) 

12.4 
(1.6) 

15.9 
(0.7) 

15.9 
(0.7) 

15.4 
(0.7) 

15.4 
(0.7) 

 

Table 4.S6. Major and minor groove widths of DNA duplex (CTAGGTGGATGACTCATT)2 
from GB-Neck2nu and TIP3P MD simulations. Both simulations started from B-form. Standard 
deviation for each run is shown in parenthesis. 100 ns TIP3P MD trajectory was taken from 
Pérez et al.179 

Groove 
width 
(Å) 

GB-Neck2nu 
 

TIP3P 
 

Major 19.2 (2.0) 18.0 (1.9) 
Minor 13.1 (1.3) 12.8 (1.8) 
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Figure 4.S1. Comparison between GB and PB energies for individual structures in the DNA 
training set for GB-Neck2nu and GB-Neck. Top panel shows the structures for 10th, 55th, 200th, 
370th frames as an example of structural diversity in training. Second panel shows the backbone 
RMSD of each structure to canonical A and B-forms of DNA.  
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Figure 4.S2. Comparison between GB and PB energies for individual structure in DNA training 
set in the 5th round (first 370 structures) and structures taken from 0.75 microsecond MD 
simulation of DNA duplex using GB parameters from the 5th round (last 150 structures). We 
stopped the function minimization after the 5th round since there is no strong energy bias for the 
new structures. Including the last 150 structures in training set did not reduce the error between 
GB and PB energies (data not shown). This indicates that our training set  converged after 5th 
rounds.  

 

Figure 4.S3. Comparison between GB and PB energies for individual structure in RNA training 
set in the 5th round (first 187 structures) and structures taken from 1.0 microsecond MD 
simulation of RNA duplex using GB parameters from the 5th round (last 200 structures). We 
stopped the function minimization after the 5th round since there is no strong energy bias for the 
new structures. Including the last 200 structures in the training set did not reduce the error 
between GB and PB energies.  
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Figure 4.S4. Comparison between GB and PB energies for individual structures in RNA 
(CCAACGUUGG)2 training set for GB-Neck2nu and GB-Neck. Top panel shows the backbone 
RMSD of each structure to canonical A and B-form RNA. 

 

Figure 4.S5. Comparison between GB and PB energies for individual structure in DNA 
(CGCGAATTCGCG)2 test set for GB-Neck2nu and GB-Neck. First 450 structures were from 
GB-intermediate MD simulations and last 200 structures were from TIP3P MD simulation. Top 
panel shows the backbone RMSD of each structure to canonical A and B-form DNA. 
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Figure 4.S6. Comparison between GB and PB energies for individual structure in RNA 
(CGCGAAUUCGCG)2 test set for GB-Neck2nu and GB-Neck. First 500 structures were from 
GB-intermediate MD simulation and last 100 structures were from TIP3P MD simulations. Top 
panel shows the backbone RMSD of each structure to canonical A and B-form RNA. 

 

Figure 4.S7. Comparison between GB and PB energies for individual structure in DNA/protein 
complex 1GCC test set for GB-Neck2nu and GB-Neck. First 500 and last 350 structures were 
from TIP3P MD simulations at 300 and 500 K, respectively. Top panel shows the backbone 



 

187 
 

RMSD to NMR structure (PDB ID: 1GCC). Flexible termini were skipped for RMSD calculation 
(residue 23th to 26th

 and residue 75th to 85th
 in the complex). 

 
 

 

Figure 4.S8. Comparison of the inverse of effective radii between GB-Neck (top), GB-Neck2nu 
(bottom) and the inverse of PB ―perfect‖ radii for A and B form DNA duplex 
(CCAACGTTGG)2,  A and B form  RNA duplex (CCAACGUUGG)2

. A and B-form  DNA 
duplex (CCAACGTTGG)2  were used for radii training of GB-Neck2nu. 
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Figure 4.S9. Comparison of the inverse of effective radii between GB-Neck (top), GB-Neck2nu 
(bottom) and the inverse of PB ―perfect‖ radii for DNA quadruplex  (PDB ID 1L1H)193 and 
DNA/protein complex (PDB ID 1GCC).178 

 

 

Figure 4.S10. Backbone RMSD evolution of DNA and RNA duplexes for GB-Neck2nu (left) 
and TIP3P (right) MD simulations. Stable structure in experiment was used as reference for 
RMSD calculation. For DNA duplexes, MD simulations started from A-form. For RNA 
duplexes, MD simulations started from B-form. Experimental structures were used as reference 
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structure for RMSD calculation. GB-Neck2nu MD simulations are 10-fold longer than TIP3P 
MD ones (1000 and 100 ns for GB-Neck2 and TIP3P, respectively). ―DNA dup seq2‖ 
corresponds to DNA duplex (CTAGGTGGATGACTCATT)2 and the TIP3P trajectory was 
taken from Pérez et al.179 
 

 

Figure 4.S11. Backbone RMSD evolution of Protein/DNA complex 1GCC.  
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Figure 4.S12. (Top) Backbone RMSD of two DNA quadruplexes for GB-Neck2nu (left) and 
TIP3P (right) MD simulations. (Bottom) X-ray structure of DNA quadruplex 1L1H (PDB: 
1L1H) with the representative structure of the most populated cluster from GB-Neck2nu (1000 
ns) and TIP3P (300 ns without ion) MD simulations. Without salt, TIP3P structure different 
compacted structure; this is consistent with previous study.164 
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Figure 4.S13. Structural overlapping and BB-RMSD between representative structures of the 
most populated clusters from GB-Neck2nu (blue) and TIP3P (red) MD simulations. Only 
backbones of DNA are shown in DNA/protein 1GCC complex for clarity.  
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Figure 4.S14. Distance between O2 (DT7) and HN1 (DAPI) versus time in ten of GB-Neck2nu 
MD simulations of DAPI ligand binding to minor groove of DNA duplex 
(CGCGAATTCGCG)2. The distance of O2 (DT7) and HN1 (DAPI) in X-ray structure is ~2.2 Å.  
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Chapter 5. Conclusion and Future Direction 

 

 

 

 

 

 Molecular Dynamics simulation has been powerful to understand biological process at 

atomic detail. However the interesting process, such as protein folding, happens in large time 

scale, from microsecond to second.37a With the current computer power, most of research groups 

are only able to reach to microsecond timescale.37a, 172 Alternatively, implicit solvents (especially 

fast pairwise Generalized-Born solvent model) dramatically accelerate the sampling thanks to 

their low viscosity1a and their friendliness to parallel computation in CPU and GPU.4, 48  

 The speed comes with trade-off accuracy. The most accurate implicit solvent model such 

as Poisson–Boltzmann method77 or GBMV2 model20 is just too slow to be routine in long time 

scale MD simulation.14 Much faster and more popular model to be used in MD simulations are 

GB-HCT21 and GB-OBC23 models but they favor more alpha helix31, 33-34, 49, 55 and have much 

stronger salt bridge strength30b, 34b than explicit solvent simulation.  

GB-Neck model24 introduces more correction to GB-OBC with the hope that it is as fast 

as GB-OBC and its accuracy is comparable to more accurate (but slow) GBMV2 model. It turns 

out that this model tends to disfavor native structures for both protein and nucleic acid 

simulation.24, 36, 49 Mongan et al.24 showed the H-bond in beta hairpin was too weak in GB-Neck2 

MD simulation. This group and others also showed DNA duplex strands quickly dissociates in 

this model.24, 36 

Since the performance of a GB model is heavily affected by its set of empirical 

parameters, we hypothesize that GB-Neck has more correct theory level as compared to its 

ancestors (GB-HCT, GB-OBC) but its parameters need to be re-optimized with more careful 

design of training and testing data.  
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Our main goal is to develop a set of parameter for GB-Neck to reduce the limitation of 

the current fast pairwise GB models. Specifically, we want to reduce the helical bias, reproduce 

the salt bridge strength and have more stable DNA/RNA duplex simulation as compared to 

explicit MD data. 

We have presented the further development of CFA-based GB-Neck model in chapter 2 

and 4,24 resulting two parameter sets: a set for protein simulation (GB-Neck2) and a set for 

nucleic acid simulation (GB-Neck2nu). GB-Neck2 is shown to have better secondary structure 

balance and salt bridge strength as compared to GB-Neck or GB-OBC model for protein 

simulation.29 GB-Neck2 even goes further by showing that with the combination of a good GB 

model, a good force field and GPU, simulation of µs to millisecond protein folding is now 

routine for common hardware.167 GB-Neck2nu set is not only able to maintain stable nuclei acid 

duplex simulation but also able to reproduce the folding of DNA, RNA hairpin or reproduce the 

ligand binding process. Unlike other GB models that only deal with either protein or nucleic 

acid, two sets GB-Neck2 and GB-Neck2nu can be combined for protein/nucleic acid complex 

simulation.   

 Our GB model is based on CFA approach (R4 model), which shows overestimate 

effective radii.17 However, the rigorous parameter fitting introduce error cancelation and this 

fortuitous cancelation is transferrable from one to other systems. Our strategy in designing 

training set and test set, designing objective function will provide framework for developing later 

models.  

 The success of our GB model for nucleic acid simulation, at least for the case of 

DNA/RNA duplex or hairpin, shows two important things. First, there is still room for 

developing solvent model for nucleic acid model although this system is highly charged if proper 

parameterization is done. Secondly, PB calculation is still good benchmark for GB parameter 

fitting.  

 Although we have shown the robustness of GB-Neck2 and GB-Neck2nu for protein and 

nucleic acid simulations, there are still some limitations for those models: 

 The solvation energy errors (as compared to PB method) are still large (from 10 to 40 

kcal/mol for large systems such as lysozyme or protein/DNA complex 1GCC).  
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 The alpha helical is reduced (compared to GB-HCT and GB-OBC) but GB-Neck2 still 

overestimates the 3-10 helix (as compared to TIP3P data).29 Additionally, we showed 

that the PP2 content is underestimated.29   

 The salt bridge strength is reproduced from TIP3P data but the geometry of the salt 

bridge is different.29 

 For GB-Neck2nu model, it tends to break the H-bond of A-T base pair. (chapter 4) 

The model studied here and other analytical forms of GB model might be further improved 

to have better accuracy and better speed by several approaches if we have: 

 Better intrinsic radius set to define the solute/solvent boundary. We have been showing 

that performance of a given GB model is sensitive to the intrinsic radii set. Thus, having 

good radii set is critically important for the development of GB model.  

 More converged data from explicit solvent simulation for benchmarking GB simulation. 

The end-line-aim of developing a GB model is to replace explicit solvent in case of 

needing better sampling performance. Thus, direct comparison of GB and explicit solvent 

MD simulations should always be carried out to validate the accuracy of new GB model. 

While getting converged data for GB is not difficult, achieve the same task with explicit 

solvent seems to be laborious work. For example with even small trp-cage protein with 

20 residues,59 it was required to run 208 microsecond to get 12 folding and 12 unfolding 

event in TIP3P solvent using supercomputer Anton.46 While we are able to get those 

numbers of folding/unfolding events using up to 2 microseconds. This took only 2 days 

of simulation using one GPU core.167  

 More accurate non-polar term.  

 Better treatment of ion in nucleic acid simulation. 

 Better theoretical GB model: The analytical form of more theoretical accurate model, R6 

model, is on progress.27  

 New algorithm to accelerate GB effective radii calculation. The current approach of 

calculating effective has complexity of O(N2).194 The solvation computation is thus 

significantly slow for large molecule.14, 194  
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