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Abstract of the Dissertation

GPU-accelerated Protein Modeling and Structure Prediction using Molecular Dynamics

by

He Huang

Doctor of Philosophy

in

Chemistry

Stony Brook University

2018

Physical potential and solvation dictate the underlying laws in molecular modeling. Ac-
curate descriptions of both of them are key to structural predictions of proteins. For the
physical potential validation, we demonstrated the evaluation and comparison of two force
fields on their capabilities in reproducing crystal structure dihedral angles and helical propen-
sity measured from chemical shift, respectively. The findings cross validate our understand-
ing in protein backbone parameter modifications and point out the necessity of improving
amino acid specificity in the current model. For more complete solvation description in
implicit solvent, we focused on the nonpolar term which hasn’t been extensively addressed
and sometimes even neglected in calculations. In biomolecules where hydrophobic inter-
actions play a central role, excluding nonpolar contributions can negatively influence the
stability of the system. In my thesis, a multidisciplinary method of physical chemistry and
scientific computing is adopted for a fast and accurate way to estimate the Solvent Acces-
sible Surface Area (SASA) and calculate nonpolar free energy. The corresponding forces
derived analytically are included in MD simulations to stabilize folded conformations. Im-
plemented in Amber software and tested on consumer GPUs, this novel algorithm reasonably
reproduces the simulation results of current implementation (LCPO), but accelerates MD
simulations over 30 times, which is greatly desirable for protein simulations facing sampling
challenges. With the associated parameter empirically calibrated against explicit solvent
simulation results, we validated the GPU-accelerated GB/SA simulating four small proteins
(Trp-cage, CLN025, Homeodomain and HP36). The predictions of protein melting behavior
and structural equilibria are more consistent with experimental measurements, compared to
the predictions without the nonpolar term. Prior to the method developments, MD simu-
lations were applied in CASP protein structure refinement and protein aggregation studies.
All these findings will provide insight and experience as to further research needs.
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Chapter 1

Introduction

Living and non-living things in the universe are made of elements, atoms and molecules.
Proteins are biological molecules that play essential roles in ubiquitous processes of life.
Plants use proteins to harvest energy from the sun, to be more specific, proteins embedded
in cell membranes gather light for photosynthesis; both plants and animals digest food by
breaking bigger nutrient molecules into smaller pieces using enzymes and transport them
across membranes or in bloodstream, which power up other processes of the cell; all level life
forms carry out autonomous regulations using hormones and other signaling receptors, attack
as or defend against pathogens using antibodies; other important roles are played by proteins,
so as to support or move cells, build other proteins or read genetic instructions etc.[1]. All in
all, so many processes that proteins are engaging have been uncovered, although all amazing
things proteins could do are far less than being clearly understood.

How do we know so much about proteins? Because researchers around the world are
studying these molecules at various levels from numerous perspectives. Proteins are related
to the origin, survival and well-being of human beings including human researchers. That
is why there have been many studies carried out to understand the structure, function
and evolution of proteins, from as small as the atomic level, to molecular, cellular[2], and
individual[3] level (human proteome), all the way up to as big as ecological level[4]. Scientists
and researchers observe phenomena, ponder on the causes and set up model systems trying
to reproduce the observations and distill the principles.

Interrogations and implications around proteins probably is indeed endless. The ques-
tion of ”how proteins fold to a specific 3D structure only from sequence information” puzzles
generations of scientists. Proteins encode the mysterious force of nature as molecular ma-
chines, given they are originally just ”ATGC...” DNA sequences wrapped in genomes and
later get released along with ”AUGC...” RNA molecules. Proteins have been discovered to be
so relevant to human health and disease that the pharmaceutical companies produce drugs
to target some key interactions between proteins and their biological counterparts, such as
RNA, DNA, or other proteins. And a major part of proteins don’t adopt deterministic struc-
tures or only do in some particular circumstances, called intrinsically disordered and folding
upon binding. There are tremendous question masks and potential applications going after
this central molecule, PROTEIN, or better described as a class of molecules made of basic
units called amino acids.

This thesis describes a tiny portion of these endeavors directed at the atomic level and
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structure prediction perspective. Thanks to the inventions from ancestral and contemporary
researchers, efforts were able to be made into theoretically predicting the structures and
structural ensembles of proteins. These proteins have been studied in vitro under experi-
mental conditions mimicking physiological environment. In this thesis, these proteins are
studied in silico simulating the experimental conditions, where proteins were observed and
measured in their natural and denatured states.

1.1 Four levels of protein structures

There are 20 naturally occurring amino acids, which concatenate to polypeptides and
proteins through condensation reactions forming peptide bonds. There are also other post-
translational modifications, such as disulfide bond or other rarer types of covalent bond
formation. All 20 amino acids share the same generic structure given in Figure 1.1A,
where the amino group, carboxylic acid group and hydrogen are bound to the central carbon
atom (called alpha carbon, Cα). The charge state of amino group to be +1 charge and
carboxylic acid group to be -1 charge shown in Figure 1.1A is often found at neutral pH,
called free termini (terminus); depending on the physiological conditions, experimentalists
synthesize and computationalists simulate proteins with terminal cap residues. The R group
(also known as the side chain) differentiate 20 amino acids in terms of size, polarity, charge,
hydrophobicity etc. The sequence of amino acids of each polypeptide chain of which the
protein is composed determines the primary structure of a protein.

Figure 1.1: A. Generic formula of amino acid; B. Three types of cap residues in Amber,
N-terminal cap in red and C-terminal caps in blue.
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Delocalized electrons within the peptide bond result in a phenomenon called resonance,
which gives peptide bond a partial double bond character and constrained to be planar
without rotatable freedom (Figure 1.2A). Therefore, the only source of conformational
freedom of polypeptide/protein backbone comes from the torsional rotation around the N–
Cα and Cα–C single bonds. These two bonds are respectively designated as torsion angle
φ and ψ. Thus these two parameters describe the backbone flexibility and conformational
preferences of each amino acid. And they are the backbone dihedral parameters mentioned
in the later contexts. The values of these two dihedral angles are represented on a φ vs. ψ
2D plot, called Ramachandran plot[5].

Figure 1.2: A. The torsion angles φ and ψ illustrated on a polypeptide fragment centering
on the amino acid with side chain named Ri. The planes formed by peptide groups are in
transparent light blue; B. α-helices (magenta) and β-sheets (yellow) highlighted in a protein
structure; C. Definition of different secondary structural basins determined from backbone
dihedral angles φ and ψ.

As a result of steric hindrance, not all combinations of φ and ψ are stereochemically
feasible. But there are still patterns appearing in limited φ/ψ space, to be more specific, when
certain allowed φ/ψ torsion combination is adopted and propagated consecutively along the
polypeptide chain, some special 3D arrangements will appear as re-occurred patterns, called
secondary structures of a protein. The two most common secondary structural elements
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are α-helices and β-sheets (Figure 1.2B, which is the crystal structure of a protein TR829
studied in Chapter 4, PDB code: 4rgi[6]). These secondary structures are held together by
hydrogen bonding between amide hydrogen and carbonyl oxygen. Other protein secondary
structures including ppII, left-handed α helix and 310 helix are also important. Some analysis
approaches are introduced in details in Section 1.2.4.

In globular proteins, tertiary structure comes into place as results of hydrophobic
residues packing and side chain interdigitation, often with salt bridges or hydrogen bonding
formation. The different ”fold” of tertiary structures can be further hierarchically classified as
different levels, for example in the CATH protein structure classification database[7], ”class”
as the highest level, followed by ”architecture” without connectivity info, and ”topology”
as the finer description. Figure 1.3 displays proteins of diverse topologies used for SASA
estimation test in Chapter 2.

Figure 1.3: Protein data set of diverse topologies with designated name and size

Multiple chains of proteins form quaternary structure to carry out functions, for exam-
ple HIV-protease performs cleavage of polypeptide as homodimer. However, oligomerization
of amyloid-forming proteins are associated with pathogenesis in diseases such as Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease and type II diabetes. If the mechanism
of these protein oligomerization and pathogenesis could be understood atomically, modula-
tions or interference could be carried out to prevent these quaternary structures formation.
There is a long way to go at this point, but some efforts into the mechanism study of the
initialization of amyloid fibrils have been paid and reported in Chapter 5 of this thesis.
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1.2 Protein modeling techniques

To seek answers for questions displayed at different levels of protein structures, we build
models at atomic details in computer programs and strike to reproduce and predict the
properties of protein molecules in their close-to-experimental conditions. These models are
governed by Molecular Mechanics (MM). MM provides the underlying physics and defines
the potential energy profiles differentiating various stability of protein conformations. For
proteins to sample lower energy i.e. more stable conformations, Molecular Dynamics (MD)
are used to calculate the interactive forces and simulate the motions. We carry out MD
simulations and analyze trajectory data in Amber Software[8]. The analysis methods, such as
RMSD calculations, Cluster Analysis, DSSP Analysis, are implemented in Amber Modules.
For protein structure and trajectory visualizations, we mainly use VMD[9] software. In this
following section, relevant protein modeling tools utilized in this thesis are briefly introduced.

1.2.1 Molecular Mechanics and force field

To understand the motions and energies of atoms and molecules, Quantum Mechanics
(QM) ultimately provides the underlying physics on the subatomic scale, which accurately
describes the probabilities of electron densities and energy level changes caused by orbital
effects. However, QM is too complex thus it is not applicable for understanding proteins.
In contrast, Molecular Mechanics (MM) is at the appropriate scale and efficacy, where only
nuclear positions with masses and charges are used to calculate the motions and energies.
The hybrid QM/MM approach is available and better for chemical reactions, catalytic sites,
and transition state calculations, but still not applicable for protein structure studies yet.

In general, the MM potential energy functions are composed of energy terms representing
bond stretching, angle bending, torsional angles correction, and non-bonded interactions.
This equation below is a widely used expression of potential energy function[10]:

E(R) =
1

2

∑
bonds

kb(b− b0)2 +
1

2

∑
angles

kθ(θ − θ0)2 +
1

2

∑
dihedral

kφ(1 + cos(nφ− δ))+

∑
non−bonded

(
A

r12
− B

r6
+
q1q2
Dr

) (1.1)

As a function of the coordinates (R) of all atoms in a protein, potential energy (E) is
calculated as a sum of four terms; each term is a function of bond length (b), angles (θ),
dihedral angles (φ) and distances between two particles (r), respectively. The two term
of bond/angle energy are modeled by Hooke’s Law as a harmonic oscillator. kb/kθ is the
bond/angle force constant determining the strength of the bond/angle, b0/θ0 is the ideal
bond length/angle, which are derived from infrared stretching frequency and high resolution
crystal structure geometry[11]. The third term in the equation is used for dihedral rotations,
which is described as periodic and wave-like thus is modeled by a sum of cosine functions.
kφ, n and δ are barrier height of dihedral rotation, multiplicity and phase, respectively. This
term has no physical inferences but is used to correct the discrepancy between QM and
MM. Therefore, this dihedral term is usually fit against QM after all other energy terms
are added up in place. The forth term describes the non-bonded interactions, which are
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made of van der Waals interactions and electrostatic contributions. Van der Waals energy
consists of repulsive term and attractive term of dispersion energy, combined to be known
as Lennard-Jones 6-12 potentials, has a minimum at the distance of the sum of the van der
Waals radii of this certain atom pair; parameters A and B are determined by non-bonding
distances in crystals, gas-phase scattering measurements[10] and organic liquids simulated
by optimized potentials for liquid simulations (OPLS)[12]. The electrostatic interactions
between two atoms use a Coulomb potential. D the dielectric function for the medium and
r the distance between the two charges. There are no explicit hydrogen bond interactions,
which is assumed to be taken care of by the electrostatic attraction when the donor and
acceptor atoms possess opposite charges.

Different parameters can be determined for this equation by different systems and mod-
els, which result in various force fields. Force field in molecular modeling refers to the MM
potential energy function and the parameter sets. Protein force fields used today date back
to the late 1980s[13, 14, 12], and took generations of development and modifications. In one
of the most widely used force fields, ff99SB[15], all the bond, angle and non-bonded terms
(in Equation 1.1) are calculated in the same way as its ancestral force fields ff94[11] and
ff99[16]. However, the torsion cosine parameters are refit against QM on the energy mini-
mum of a larger set of Gly and Ala tetrapeptides conformations, instead of amino acid-like
small molecules or limited set of Ala dipeptides. This refitting achieved a better secondary
structure balance, thus it is widely used[17, 18, 19] and it is also used as a basis model
for backbone variation updates such as ff99SB*[20], ff99SBnmr[21] and side chain updates
ff99SB ILDN[22]. More recently, ff14SB[23] was published with an empirical correction on
the backbone dihedral parameters to better match scalar coupling data and a refit against
QM gas-phase energies for the side chain dihedral parameters. These side chain modifications
were then combined with ff99SB backbone dihedral parameters, termed ff14SBonlysc[23],
along with a Generalized Born (GB) solvent, to successfully fold a set of proteins (all except
HC16 as shown in Figure 1.3) from only the sequence information[24].

1.2.2 Solvation and implicit solvent

Proteins are typically studied in an aqueous environment. Biophysical study of their
properties and functions requires an accurate description of their solvation and desolvation
processes, i.e. the binding and removal of water[25] or solvent. To study how proteins fold
or bind, the solvation free energy changes (∆Gsol) associated with solute-solvent interactions
and water reassembly are essential. In biomolecular modeling, these water molecules can be
represented explicitly or implicitly. Explicit solvent models, which compute all the pairwise
interactions over all solute and solvent atoms and are thus more detailed and complete in
theory, however, are limited in usage, as water atoms dominate the calculations and friction
slows the sampling of large conformational changes[26]. As an attractive alternative, implicit
solvent models possess high efficiency in sampling, which has promoted their wide application
in protein folding[24, 27], structure prediction[28], protein design[29] and refinement[30].

Implicit solvent model efficiently describes the electrostatics of molecules in water envi-
ronment. It represents the solvent implicitly as continuum with the dielectric properties of
water, and also includes the charge screening effects of salt. Some attractive features[8] of
implicit solvent models are (1) the computation of implicit solvation is generally cheaper and
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scale better for parallel computing than explicit solvent; (2) due to the absence of viscosity
in explicit solvent, the molecule can explore through conformational space much faster; (3)
Periodic Boundary Conditions and Particle Mesh Ewald summation are typically used to
speed up explicit water calculations, but they might result in interacting artifacts. Implicit
solvent with infinite volume does not need them thus the artifacts could be avoided.

1.2.3 Molecular Dynamics and Amber software

Given a potential energy function and a parameter set, there are various approaches to
study the dynamics of proteins as well. One is molecular dynamics simulations in which
Newton’s equation of motion are solved for atoms in the system[10].

Molecular dynamics is a computational method which simulates the motions of particles
by calculating their interaction forces and potential[10]. This method has been applied
to systems as small as an atom and as large as a galaxy. In microsystems, the complex
forces between atoms and molecules are considered; between stars the simple gravitational
interactions are calculated. The essential rule that these calculations obey is the classical
Newton’s law of motion:

F = m× a (1.2)

At each time point, the force that acts on each particle of interest could be calculated.
Integration of a series of time steps generates a trajectory that describes the positions and
velocities of all the particles; the potential energy and kinetic energy are also computed
accordingly.

Beginning 40 years ago[31], molecular dynamics simulations of proteins have been widely
used as very powerful tools to study the structure and dynamics of peptides and protein
molecules. The applications are ranged from, but not limited to, the energetic calculations
of ligand binding and enzyme reaction mechanisms, protein folding and refolding, analysis of
experimental data and refinement of structures. The widely used software “Amber” provides
a framework for a suite of programs that allows users to carry out and analyze molecular
dynamics simulations for proteins, nucleic acids, carbohydrates and lipids[8]. The term
Amber also refers to the empirical force fields. In Amber, the simulation module and force
fields are separated; other computer packages or platforms (Gromacs, Charmm, NAMD,
OpenMM etc.) have implemented Amber force fields, and other force fields can be used
within the Amber programs[32].

MD as a general sampling method is not efficient enough because the rough energy
landscape of proteins makes the simulations get trapped easily in local minimum-energy
states. Therefore, when conformational sampling is beyond straightforward MD simulations,
we employ enhanced sampling method such as REMD. First introduced to work with Monte
Carlo algorithm[33, 34, 35], Sugita and Okamoto[36] developed an implementation with MD,
named replica exchange molecular dynamics method (REMD). In REMD, multiple copies
(or replicas) of the same system are simulated simultaneously and independently at a ladder
of temperatures. They exchange temperatures with neighboring replica based on potential
energy overlap under Metropolis criterion. REMD has been shown to be more efficient
than MD[37] and the convergence could be further improved by coupling to a reservoir of
high-temperature generated structures[38].
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In MD/REMD simulations carried out in this thesis, some more techniques employed are
briefly introduced here. To reduce the degrees of freedom thus simplify force calculations,
SHAKE algorithm, implicit solvent and periodic boundaries for explicit solvent are applied.
SHAKE[39] imposes constraints on the bond lengths of the bonds involving hydrogen atoms,
which average out the highest frequency vibrations. Implicit solvent and periodic boundaries
have been introduced in previous section 1.2.2. To simulate proteins at constant tempera-
tures, the solute and solvent system is coupled to an external heat bath that is fixed at the
desired temperature, which acts as a source of thermal energy supply. The velocities are also
scaled at each temperature in both MD and REMD. Langevin dynamics works as a stochas-
tic heat bath, which approximates the frictional effect (frictional drag on the solute and
random collisions associated with solvent thermal motions) of solvent molecules. A collision
frequency associated with Langevin thermostat is used to control the magnitude of the fric-
tional force and the variance of the random forces. The Hmass re-partition technique allows
larger time step of integration, in which the mass of heavy atoms is re-partitioned onto the
bonded hydrogen atoms. By doing this to slow the highest-frequency motions contributed
from hydrogen atoms and to avoid numerical instability, the time step of simulations could
be increased from the conventionally used 2 femtosecond (fs) to 4 fs[40].

1.2.4 Secondary structure analysis and clustering algorithm

In analysis carried out in this thesis, two different approaches are used to assign and
characterize secondary structures in a protein: 1) φ/ψ dihedral angles represented on Ra-
machandran plot and 2) Dictionary of protein secondary structure prediction (DSSP). For
the dihedral angles, we define secondary structure basins illustrated in Figure 1.2C, which
is consistent with the previous studies[19, 23]. The definitions of the four secondary struc-
ture basins are as follows: right handed helix (α), (φ, ψ),(−160◦ to −20◦, −120◦ to 50◦);
left handed helix (αL), (3◦ to 90◦, −60◦, 110◦); extended β-strand conformation, (−180◦ to
−110◦, 50◦ to 240◦; or 160◦ to 180◦, 110◦ to 180◦); and ppII, (−90◦ to −20◦, 50◦ to 240◦).
Note that a more stringent (−100◦ to −30◦, −67◦ to 7◦) α-helix-forming basin is used for
helical propensity calculations in Chapter 3. DSSP was developed by Kabsch et al.[41] as a
program that recognizes hydrogen bonding and geometrical features for secondary structure
assignment[41]. The types of secondary structure include α-helix, 310-helix, π-helix, parallel
β-sheet, anti-parallel β-sheet, turn and bend. Bend is quantified to form if five Cα (i-2, i-1, i,
i+1, i+2) position a curvature angle larger than 70◦. If a hydrogen bond is formed (with up
to 4.1 Å N-O distance and 60◦ misalignment angle), this bend is a turn. 4 consecutive turns
of i ← i+4 hydrogen bonding makes a α-helix, 3 turns of i ← i+3 is 310-helix and 5 turns
of i ← i+5 is π-helix. Helices are locally formed while β-sheets are more global. β-sheets
can be formed in parallel or anti-parallel. This algorithm has been implemented in Amber
cpptraj module[42].

Clustering is a technique used in many fields to dissect data into discrete sets based
on similarities. In protein structure cluster analysis, pairwise RMSD values are evaluated
and the geometric structures are separately by defining certain criterion, such as distances
between clusters. In the cluster analysis carried out in this thesis, the top-down divisive (hi-
erarchical) clustering algorithm has been used. Shao et al.’s work[43] has recommended that
this algorithm performs the best if the cluster count is not defined prior. Benchmark analysis
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has also been done and it is found that an epsilon value of 2.0 Å works the most efficiently at
generating distinct clusters. The meaning of this epsilon value could be explained as follows,
as larger clusters that originally have close distances further divide, the minimum distance
between clusters is increasing; once the closest distance exceeds 2.0 Å, the clustering process
finishes. If epsilon value is < 2.0, there will be more cluster numbers of smaller sizes, which
split the already very similar topologies even further; if epsilon value is > 2.0, structures
within each cluster are not similar enough. The distance between clusters is measured as the
average distance between all members of two clusters. The representative structure (cluster
centroid) is picked if this structure has the lowest cumulative distance to every other point
in this cluster. This analysis tool had been implemented in Amber cpptraj module[42].

1.3 Improvements needed in current modeling tools

Essential compositions of protein modeling and simulations must include force field, sol-
vent model, sampling method and implementation into computer programs. Aside from ap-
plying the current modeling tools to studying protein structures at different levels (Chapter
4 and Chapter 5), investigations were done to explore and improve the implicit solvent
models (Chapter 2) and Amber force field evaluations (Chapter 3).

1.3.1 Nonpolar solvation and GPU-parallelization

In implicit solvent models, the solvation process is put in the context of a thermodynamic
cycle[44] (Figure 1.4), first solvating the uncharged solute by creating and accommodating
a cavity (nonpolar term, ∆Gnp) and then turning the charges back on by modeling wa-
ter as a continuum high dielectric (polar term, ∆Gpol). The polar, or electrostatic part,
is typically modeled with Poisson-Boltzmann (PB)[45] or Generalized Born (GB)[46] equa-
tions. The nonpolar part is often further decomposed into cavity (∆Gcav) and van der
Waals (∆Gvdw contributions)[47]. The cavity term tends to be unfavorable, while the van
der Waals interaction with solvent is typically favorable, thus some cancellation between
these contributions gives rise to the overall ∆Gnp. Both ∆Gcav and ∆Gvdw are thought
to be proportional to the average number of waters making direct contact with solute (i.e.
first solvation shell approximation)[48]. Thus the nonpolar term is often estimated by a
SASA-based method[46], although it has been pointed out that SASA is not accurately pro-
portional to solvation energies for small alkane solutes[49, 50], and the volume term may be
more important[50, 51]. While SASA-based implicit solvent incorrectly predicted associa-
tion stabilities of small molecule amino acid analogues when compared to explicit solvent
results[48, 52], SASA-based nonpolar solvation has been shown to be useful for accurate pre-
diction of native-like protein conformations[53] and protein-ligand binding affinities[54, 55]
such as in MM/PBSA and MM/GBSA.
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Figure 1.4: Thermodynamic cycle of the solvation process. Solvation free energy (∆Gsol)
is decomposed into polar (∆Gpol) and nonpolar(∆Gnp) contributions. The steps involve
uncharging the solute in vaccum (∆Gv

np), removing the solute-solvent interaction in vacuum
(no free energy change), creating a solute cavity (∆Gcav

np ), establishing uncharged solute-
solvent interaction in solvent (∆Gvdw

np ), and charging the solute in solvent (∆Gw
pol). The

figure is adapted from Levy et al.[56]

Although much recent effort has been devoted to improving the polar solvation contribu-
tion, less attention has been paid to the nonpolar solvation term. This is likely because of its
small magnitude relative to the polar part, questionable accuracy of simple nonpolar models,
and significant computational cost. Its two sub-terms are of opposite signs in free energy
change, thus this term is often treated as negligible; cavity creation loses entropy, while for-
mation of attractive solute-solvent interaction gains enthalpy[49]. Compared to a solvation
energy of -5.0 kcal/mol for a polar molecule, this number is only 1.8 kcal/mol for a nonpo-
lar molecule of similar composition (e.g. ethanol vs. ethane)[57]. In some other reported
literature, even if nonpolar contributions were considered, the implicit solvent accuracy was
not improved with respect to experimental or explicit solvent results[58]. Even with demon-
strated optimizations[50, 56, 59, 60], the cavity sub-term, particularly the SASA, remains a
major resource-demanding calculation. Moreover, in contrast to the fact that all the other
energy terms can be computed on GPUs in the most recent Amber implementation[8], the
SASA-based nonpolar approaches can only be calculated on CPUs, producing a bottleneck
that severely limits sampling in simulations.

In fact, to accelerate SASA calculation, we could refer to GB models and their efficient
implementation on fast general purpose GPUs[61]. These GB models[62, 63, 64] are trained
to reproduce the PB energies, along with the PB-based “perfect” effective radii[65], em-
ploying additive and pairwise analytical energy energies and their derivatives. This pairwise
descreening algorithm[66] serves as an ideal platform for GPU parallelization[61]. When the
same instruction is executed for every atom pair in the protein system, massively efficient
GPU cores can compute the desired values simultaneously. Compared to parallel perfor-
mance of CPU implementation with all double precision calculations, a single GPU using
the mixed precision model[67] can achieve a factor of 2-5 speed up compared to massive CPU
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cores, as CPU scaling plateaus long before it reaches the GPU performance[61].
Inspired by pairwise descreening algorithm used in GB models, a pairwise and GPU-

friendly SASA estimation approach is developed to fill the gap in the current Amber im-
plementation and accelerated nonpolar solvation. An efficient pairwise GPU-parallelizable
algorithm requires the same instructions to be executed for every neighbor atom j of i indis-
tinguishably. In the current implementation of Linear Combinations of Pairwise Overlaps
(LCPO) algorithm, the SASA of a central atom i is dependent on not only the neighbors of i,
but also the overlaps of the neighbors with each other. For example, in Chapter 2 Figure
2.1A, atom j1 and j2 are both neighbors of atom i. In determination of the SASA for atom
i, not only atom pair (i,j1) and (i,j2) are involved, but atom pair (j1,j2) also contributes.
This extra consideration makes LCPO a many-body algorithm and not as suitable for GPU
parallelization. Therefore, even if GPU devices are employed for GB/(LCPO)SA simula-
tions, the SA portion becomes a major bottleneck. Therefore, we proposed a new approach,
where the same computation (see Chapter 2 Equation 2.5) is used for two atom pairs
with different corresponding parameters, thus it is an ideal fit for GPU parallelization.

1.3.2 Secondary structure balance and amino acid backbone speci-
ficity

Understanding protein structures at each level are related to miscellaneous implications.
Knowledge about secondary structure is important for the understanding of many biomolec-
ular questions, such as protein folding, aggregation, protein-ligand interaction and conforma-
tional changes[20]. In the modeling and prediction of protein structural ensembles, accurate
secondary structure balance is one of the key factors to achieve a consistent outcome with
experimental measurements. Stability of different secondary structures could dictate the
relative potential energy levels of certain tertiary structures; if certain secondary structure
is destabilized or over-stabilized, the overall topology which is poor or rich in that secondary
structure, respectively, would have larger statistical weight. As a result, certain tertiary
structure would be of higher population unphysically, due to it is falsely favored by the com-
putational model. In the modeling of disordered proteins or proteins in unfolded states, the
secondary structure balance problem is exemplified and even magnified, as a more rugged
energy landscape results in a much higher sensitivity.

In force field development, bond, angle and non-bonded terms listed in Equation 1.1 are
first fit against QM and experimental measurements, dihedral term is usually the last step
to compensate the missing QM effects. In the case of ff14SB[23], backbone and side chain
dihedral parameters are trained separately. Both dihedral parameters have been shown to
shift secondary structure balances. ff99SB*[20] and ff99SBnmr[21] tweak backbone parame-
ters for a better global balance between α-helical and β-strand basins. Backbone parameters
were modified to improve the sampling of IDPs[68]. ff99SB-ILDN[22] and the more thorough
ff14SB[23] improve side chain dihedral parameters and achieve better secondary structure
balance.

So far, it is still challenging for us to reproduce the amino acid specific secondary struc-
ture balances. For one thing, the prediction of mutation effects is not always reliable. In a
commonly studied variant of Trp-cage tc5b, when the first four residues NIYL are mutated
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to DAYA in tc10b, simulated stability of tc10b (Koushik Kasavajhala and Carlos Simmer-
ling et al ’s unpublished work) are not consistent with experimental measurements[69] nor
theoretical predictions[70]. As observed in the work of Perez et al.[71], Alanine is predicted
of a much lower helical propensity while experimentally it should be among the highest.
Also the stability of secondary structures are observed to be sequence-dependent[72]: ff99SB
underestimates α-helicity, whereas it accurately reproduces the melting temperature of Trp-
cage. ff99SB*-ILDN cannot stabilize some beta-hairpin peptides. Charmm22* reproduces
α-helicity in Ala-based peptides but cannot stabilize Trp-cage.

One hypothesis is that backbone parameters are not specific enough for different amino
acids, given that in ff14SB and its ancestral force fields, except Gly and Pro, all the other
amino acids share the same backbone parameters. Even though it has been shown that
improvement in side chain parameters help with backbone specificity[23], whether current
computational models are able to capture the amino acid backbone specificity awaits more
investigations.

In principle, backbone specificity should come from side chain, but to capture them
in silico, empirical corrections are needed because (1) fixed charge model has limitations;
different side chains should induce charge redistribution on the backbone, but they are all
the same except charged and Pro residues from ff94. (2) Variations in structure and energy
arise from the complex interplay between torsional and non-bonded interactions[73], while
our current terms are still clearly suffering from issues such as lack of φ/ψ coupling terms,
short-range non-bonded problems etc. Empirical modifications have been shown as useful
solutions, such as CMAP (correction map to compensate all the surface difference from MM
to QM), used in Charmm force fields[74], and residue-specific force fields[72], considering the
intrinsic conformational preferences of amino acid residues[75].

Before modifications can be applied to the current dihedral parameters, we need to build
robust test sets and analysis tools to first evaluate the backbone specificity and accuracy
in the current models. Therefore in Chapter 3, two test tool boxes are protocolized and
demonstrated for backbone parameter evaluations.

1.4 Overview of the studied questions

In this thesis, all four chapters are displayed in reverse chronological order as the projects
were developed and carried out:

I started with the project described in Chapter 5 first as a rotation student in Dr.
Simmerling’s Laboratory, where monomeric and dimer models were built and analyzed for
islet amyloid polypeptide. As (1) the structural equilibria are sensitive to force field nuances
for intrinsically disordered protein, and (2) the experimental data used for comparison is at
much longer time scale with respect to the simulations, it is challenging to validate the sim-
ulation predictions, thus we ascribed the inconclusive findings to a not-ready computational
model and over-simplification in building dimer models.

I then participated in a project initiated by a former graduate student, where we folded
a set of proteins using GB solvent and GPU. That project became a game-changing point,
which leads to more wide testing of the same force field and solvent model combination on
a even larger data set: CASP11 refinement data set (Chapter 4). The fact that none of
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the helix bundle structures are stabilized in our simulations suggested that our computa-
tional model is specially challenged by proteins abundant in helical structures. There are
two aspects of this instability issue: (1) it could be the local helices that are not stable
and transformed to other secondary structures; (2) it is the tertiary structure of relative
arrangement between the different helix bundles that go through a thermal unfolding. The
local helical propensities point to the issues in backbone parameters, while the more global
thermal instability is ascribed to the lack of nonpolar term in implicit solvent.

Therefore, I started to work on evaluating the secondary structure preferences for dif-
ferent force field/solvent model combination (Chapter 3), meanwhile started to tackle on
incorporating the nonpolar term onto GPU calculations (Chapter 2).

To summarize, in this thesis, four questions and the endeavors directed to answering each
question are reported in the four chapters, respectively.

1. How important is nonpolar term of solvation to protein structure stability, while it
had been previously thought as a negligible correction term? (Chapter 2)

2. Whether the current all-atom force field and implicit solvent can reproduce the amino
acid backbone specificity, given all (except Glycine and Proline) the amino acids share the
backbone parameters trained on Alanine peptides. (Chapter 3)

3. How well current Amber force field and implicit solvent perform in the CASP refine-
ment, if unrestrained MD simulations are applied? (Chapter 4)

4. Whether MD simulations of low-order oligomers of amyloid-forming protein IAPP
could shed light on its fibril initialization mechanism. (Chapter 5)
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Chapter 2

GPU-accelerated Nonpolar Solvation
of Proteins: Fast Calculation of
Accessible Surface Area in Implicit
Solvent Simulations

2.1 Abstract

We propose a pairwise and readily parallelizable SASA-based nonpolar solvation ap-
proach for protein simulations, inspired by our previous pairwise GB polar solvation model
development. In this approach, we develop a novel function to estimate the atomic and
molecular SASAs of proteins, which results in comparable accuracy as the non-pairwise
LCPO algorithm in reproducing numerical icosahedral-based SASA values. Implemented in
Amber software and tested on consumer GPUs, our method reasonably reproduces LCPO
simulation results, but accelerates MD simulations over 30 times compared to LCPO imple-
mentation, which is greatly desirable for protein simulations facing sampling challenges. The
value of incorporating the nonpolar term in implicit solvent simulations is demonstrated on a
peptide fragment containing the hydrophobic core of HP36, and evaluating thermal stability
profiles of four small proteins. 1

2.2 Introduction

Our motivation to revisit the nonpolar solvation aspect arose from our recent study
of protein folding simulations using only polar solvation[24]. Although we could sample
folding for proteins up to nearly 100 amino acids in standard MD on GPUs using only the
polar solvation term (GBNeck2[62]), we observed that the proteins tested in our folding
studies[24] and Perez et al.’s structure predictions[28] suffered from poor stability compared
to experiment[24, 28]. In some of the small proteins (CLN025, Trp-cage, Villin HP36 etc.),

1This chapter is adapted from the manuscript submitted, titled ”A Fast Pairwise Approximation
of Solvent Accessible Surface Area for Implicit Solvent Simulations of Proteins on CPUs and
GPUs”, He Huang and Carlos Simmerling*
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even though native conformations are predicted from only sequences to as close as 1 Å
without prior knowledge, and correct trends in the melting behavior could be reproduced[24,
28], simulated melting temperatures (Tms) were usually off by tens of Kelvins (see Results).
We hypothesized that this instability might be a result of neglecting nonpolar solvation in
our model. It was also suggested by Chen and Brooks[48] that a fine tuning non-polar
solvation model might be helpful or sufficient for proteins such as HP36. Shell and Dill et
al. suggested [76] that more studies are needed to “examine the effect of turning off the
surface area component of the implicit models”. Here, we investigate and quantify the effect
of nonpolar term on protein stability and conformational equilibria in MD. Moreover, we
study the extent to which a simple SASA-based approach could improve reproduction of
experimentally determined properties such as folding free energy.

In our opinion, an analytical, GPU-compatible nonpolar solvation energy term is needed
before we can carry out thorough investigations on the impact of nonpolar term in MD
of larger proteins. Numerical approaches of Lee and Richards[77], and other geometric
constructions[78], are computationally costly and not suitable for our purpose, since folding
requires many microseconds of MD that remain intractable using these existing methods.
Analytical approximations expressed as a function of interatomic distances are more attrac-
tive. Wodak and Janin[79] developed the first algorithm exploiting probabilistic method,
Hasel and Still et al.[80] modified it for atomic surface areas. Dynerman et al.[81] imple-
mented this algorithm on GPU and refit the parameters to calculate SASA changes in protein
docking studies. However, their approach is not ideal for MD simulations because when atom
pairs are considered, the derivatives are not mutually of the same value and are not pairwise
additive. Weiser and Still et al.[82] derived an even faster formula approximating atomic sur-
faces from linear combinations of pairwise overlaps (LCPO), which is the current non-polar
implementation (gbsa=1) for Amber simulations. Along with another pairwise algorithm de-
veloped by Vasilyev and Purisima[83], it has been implemented on CPU for MD simulations.
These are not optimal for our purpose because we seek for a simple and fast approximation
that can be embedded in the same code loops as the other nonbonded energy terms in the
current Amber GPU-implementation[61, 8], without the need of additional, nested loops for
nonpolar term evaluations. Richmond[84] and later Wesson and Eisenberg[85] provided area
derivatives with respect to the atomic positions, but they are not pairwise additive and also
not suitable for fast parallel GPU implementation. Different approaches taken by Schae-
fer and Karplus et al.[86] make use of the Born effective radii calculated in GB equations,
which is not independent of polar term used in solvation. It may also be beneficial to have
a method to estimate SASA without the need for the full GB polar solvation calculation,
for use in SASA-based methods that also estimate the polar solvation by using atom type
specific surface tensions, or atomic solvation parameters (ASP), such used in the work of
Eisenberg et al. [87] and some preceding work[85, 88].

Here, we explore a simple pairwise approach that would be amenable to fast GPU calcu-
lations. Our algorithm therefore is designed to estimate SASA from short-range atom pair
distances. For each atom, the SASA equals a maximum value, subtracting the sum of the
areas that are buried or shielded due to other neighboring atoms preventing waters from
accessing to the atom of interest. The ideal shielding function would re-use terms that are
already being calculated for the non-solvation energies and forces. In principle, this could
provide a SASA estimate with nearly no additional computational cost. Inspired by Vasilyev
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and Purisima’s work[83], where they employed a recursive Lorentz function to compute the
central atom’s SASA from distances to all other atoms, we adhere to a single function, but
without recursive iteration complexity, to maintain its pairwise evaluation and minimal bur-
den in speed. A monotonic and continuously differential function is chosen to best represent
the pairwise burial term. Compared to the previous analytical approaches assuming protein
atoms are randomly distributed in space[79, 80], we utilize the unique geometry environments
for different protein atoms by defining 30 SASA specific atom types for parameterization.
These atom types help us incorporate non-pairwise contributions in a mean-field manner.
Each atom type possesses one parameter representing the base maximum SASA value and
another two parameters describing how much this atom can shield other atoms’ SASA and
how this shielding value changes over distance. Trained to reproduce numerical SASA values
for all the atoms in a novel training set of multiple peptides spanning all 20 amino acids,
we validate the 90 resulting parameters on a test set of proteins. In addition to comparing
SASA profiles for LCPO and our new method, we also compared the ensembles sampled
in MD simulations using both SASA calculation methods, as well as simulations without
nonpolar solvation.

In the present work, we use the SASA to estimate only ∆Gnp, thus a reasonable first
approximation is that the same surface tension could be used for all atoms. Since a variety of
surface tension values have been suggested from different training sets[46, 89, 90], we further
calibrated the surface tension that best reproduces explicit solvent data in a model system
with precisely controlled set-up. In this model system (HC16, a 16-residue hydrophobic core
fragment of HP36), the surface tension was empirically adjusted to correct the discrepancy
between GB and TIP3P simulation results. The optimized surface tension was then used for
GB/SA simulations on additional systems.

In this work, we present a fast new algorithm for calculating SASA, implement the atomic
SASA calculations in Amber software on consumer GPUs, and apply our GPU-encoded
GB/SA method on four proteins, CLN025, Trp-cage tc5b, HP36 and Homeodomain, to ex-
plore our hypothesis that incorporation of a nonpolar term could improve the predicted
protein stabilities. We compared well-converged ensembles obtained using a consistent pro-
tocol except for the inclusion or omission of the nonpolar solvation energy. Our findings
suggest a potentially valuable role of this inexpensive nonpolar term in the accuracy of our
computational model, particularly in improving the predictive ability of ensembles generated
using the GB solvent model in microsecond-timescale implicit solvent simulations.

2.3 Methods

2.3.1 Current theory

SASA-based nonpolar energy

A SASA-based nonpolar solvation model[46] was used, where the free energy is approx-
imated by taking the product of the surface tension scaling factor (γ) and the Solvent
Accessible Surface Area (SASA), where i is an atom which iterates over all atoms of this
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solute.
∆Gnp = γ

∑
i

SASAi (2.1)

SASA estimations by ICOSA and LCPO algorithm

ICOSA[77, 91] surface area (gbsa=2 in Amber) SASA is a numerical method that recur-
sively rolls a 1.4 Å radius water probe on the van der Waals surface of the molecule, starting
from an icosahedron. The current implementation does not include derivatives of the SASA,
so it is not possible to use in MD where forces are required.

LCPO[82] (Linear Combinations of Pairwise Overlaps, gbsa=1 in Amber) is the algorithm
used for GB/SA MD simulations in recent Amber versions. It considers the neighbor list
of a central atom and subtracts the pairwise overlaps from its isolated sphere area. In
practice, this is a three-body approach, as not only the overlaps between the central atom
and its neighbor atoms are calculated, but also the overlaps of the neighbors with each other.
This adds to the computational complexity compared to our desired (non-recursive pairwise)
approach.

2.3.2 Proposed fast pairwise analytical estimation algorithm

Physical rationale

Our first step is to assume that the SASA of the molecule can be approximated by
considering only the heavy (non-H) atoms, and that H atoms can also be excluded in the
calculation of solvent shielding of the heavy atoms. Estimating SASA just for heavy atoms
results in a substantial reduction of atom pairs and computational cost, which also has been
used in LCPO[82] and other algorithms[83].

The SASA of each atom in a protein configuration is its maximum surface area (termed
max SASAi) subtracting the patches shielded by close neighbor atoms (termed
shielded SASAi):

SASAi = max SASAi − shield SASAi (2.2)

The simplest although impractical case is solvation of a single atom; Both the SASAi and
the max SASAi for this atom is the surface area of this isolated sphere. In the context of pro-
teins, all atoms have at least one covalent bond, and thus atoms are never exposed entirely to
solvent. Importantly, we decided to handle the shielding by covalent and non-covalent neigh-
bors differently, since the covalent neighbors (bonds and angles) likely have larger overlaps
and closer distances than those sampled by purely non-bonded neighbors. This simplifies
our construction of a function to estimate the shielding of an atom based on the distance
of each neighbor. Therefore, the max SASAi includes shielding from covalent neighbors,
and implicitly accounts for multi-body effects such as those from overlaps between covalent
neighbors, and differences in accessibility due to hybridization variants. We also assume that
the shielding by covalent neighbors (1-2 and 1-3 neighbors) is approximately independent of
conformation, and thus max SASAi also is independent of the specific conformation, and
these pairs are not included in the shielding calculations of each SASA evaluation.

In this context, what is an atom’s max SASAi in proteins? The answer is that it depends
on the local geometry of an atom, including atoms that are covalently linked (bonds, angles
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etc.). To describe the protein local geometries, we define 30 atom types with each represent-
ing one specific local geometry of an atom found in proteins (see the detailed classifications
in Supporting Info Table S2.1 and parameters in Table S2.2). Each element (C, N, O, S)
is divided first into different hybridization states, then further divided based on the number
of bonded heavy atoms. Some types were subsequently divided further to improve quality
of fitting. As the type of bonded elements also matters in its max SASAi value, 30 total
atom types, termed “SASA type”, were used to describe all the protein local geometries.
This procedure is essential for formulating our new algorithm.

Each atom type has an associated constant max SASAi that is calculated after the fitting
of the second term, shielded SASAi (i.e. the pairwise burial term, or pairwise shielding
effect on each other’s accessible surface area). To adhere to the pairwise decomposability,
we make two assumptions that (1) the atomic surface area shielded by all other atoms is a
sum of pairwise effect, which only iterates once for all the i,j pairs, when atom j iterates over
remaining atoms with respect to atom i; (2) this pairwise effect could be represented as a
single function of distance separating this atom pair.

shielded SASAi =
∑
j

shielded SASAi,j (2.3)

shielded SASAi,j = f(Ri,j) (2.4)

As a result, shielded SASAi for a specific atom pair i, j contributes the same SASA
reduction to both atoms i and j, with symmetric forces. But as every atom in a protein
possesses its specific local geometry (as defined by diverse SASA types and involving different
neighbor atoms), iteratively evaluating all the pairwise atoms results in a unique sum for
each central atom in its specific conformation of the protein.

In the next section, we focus on the considerations of the functional form we selected,
and the parameters used for pairwise burial term evaluations.

Formula and parameterization design

Given the basic idea elaborated in Section 2.3.2, to calculate atomic SASA, a defined
constant max SASAi subtracts a term shielded SASAi, computed from summing pairwise
burial terms considering all close neighbor atoms within certain cutoffs(shielded SASAi,j)
(Equation 2.2 and 2.3). The pairwise shielded SASAi,j is assumed as a function of pairwise
distances (Equation 2.4) and it is conceptually physical. As depicted in Figure 2.1A, it
varies as the two atoms are apart at difference distances: when the distance is beyond a
certain cutoff, water can traverse the gap and the SASAs are not shielded by each other;
when the distance gets smaller, the SASA shielded on each other increases, until the atom
fully displaces solvent and thus the shielded SASA reaches its maximum. Therefore, a
sigmoid-like function with pairwise combinatory parameters is desirable.

Many options for a sigmoidal form are possible, including adapting some of the values
calculated for the GB polar term for the nonpolar calculation[86]. Our choice of formula is
informed by the Lennard-Jones function (depicted in gray in Figure 2.1B) that is already
being calculated during the simulation, minimizing the additional computational overhead.
The curve is monotonic and continuously differential at all points, and more importantly, the
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pairwise combinatory fashion of van der Waals parameters could be adapted to generate pair
specific shielded SASAi,j parameters. Some transformations (a reflection of the Lennard-
Jones curve over the y-axis followed by an up/right shift) result in a curve that fits our
conceptual prerequisites (black curve in Figure 2.1B). When the distance of an atom pair
Ri,j is beyond a certain point, the resulting shielded SASAi,j is zero; as Ri,j gets smaller,
the burial term gets larger before it reaches a plateau and sensitivity to distance decreases
as water is fully displaced. The cutoffi,j values are also taken in a pairwise combinatory
way (Equation 2.8).

Figure 2.1: 2D illustration of the proposed algorithm and the key formula for calculating
shielded SASAi,j. A. atom i in yellow is the central atom of interest; its SASA (central
dotted circle) shielded by atom j1 in red and atom j2 in blue are calculated, respectively,
using the pairwise distances Ri,j. Atom j3 in gray is beyond the cutoff distance to atom i
thus contributes zero to shielded SASAi,j. B. Our formula (black) is a transformation of
the standard Lennard-Jones 6-12 formula (gray), by a reflection over y-axis followed by an
up-right shift. Details of the derivation are provided in Figure S2.1 and Equation S2.1
to S2.6.

The stepwise derivation of the pairwise burial term shielded SASAi,j is provided in
Equation S2.1 to S2.6, with the final equation as a function of Ri,j shown below:

shield SASAi,j =



εi,j(

n

m− n

(1 +
cutoffi,j −Ri,j

σi,j
)m
−

m

m− n

(1 +
cutoffi,j −Ri,j

σi,j
)n

+ 1),

if Ri,j < cutoffi,j

0, otherwise

(2.5)

where σi,j and εi,j are calculated from SASA-type specific parameters discussed below. The
values of m and n are also discussed below. Cutoffi,j is a pairwise constant calculated from
atomic radii.
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For each atom in one SASA type, we need two parameters σi and εi to describe its ability
to shield other atoms (hence 60 total). For each atom pair, we use the Lorentz-Berthelot
combination rules to obtain the σi,j and εi,j values:

σi,j = σi + σj (2.6)

εi,j =
√
εiεj (2.7)

The cutoff distance is employed to ensure that when two atoms are far enough apart
(Ri,j >= Cutoffi,j) they do not contribute to each other’s shielded SASA. This eliminates
the repulsive portion originally present in the Lennard-Jones-type function (dashed line in
Figure 2.1B) and ensures force continuity through the cutoff distance. Cutoff distances
are the sum of the atomic radius and the water probe radius (1.4 Å). The same atom radii
for four elements (C 1.7 Å, O 1.5 Å, N 1.55 Å and S 1.8 Å) were used both here and in
ICOSA. Different radii were used with LCPO (C 1.7 Å, O 1.6 Å, N 1.65 Å and S 1.9 Å) to
be consistent with those used during the original training of the 54 LCPO parameters[92].

cutoffi,j = cutoffi + cutoffj (2.8)

cutoffi = Atom Radiusi + 1.4 Å (2.9)

The exponents m and n determine the steepness of the shielded SASAi,j transition as
the two atoms approach. Values for n were tested among 2, 4, 6 and 8; n = 4 gave the best
resulting atomic SASA fitting correlation (data not shown). Correlation was less affected
by the choice of m when 10 and 12 were used for comparison, so m = 10 was initially
used in the optimization. As other values for m and n did not improve the accuracy of the
algorithm (data not shown), and parameterizations of σi and εi values also affect the depth
and steepness of the pairwise curves, we kept m = 10 and n = 4 for all atom pairs.

Training set and fitting strategy

The 60 SASA type specific shielding parameters were fit against ICOSA SASAs (also
calculated using only heavy atoms) on a training set of 10 peptides. To cover a broad
spectrum of atomic environments, possible atomic pairwise contacts and extents of burial,
we designed a set of 10 sequences (Table S2.3.); each is a scrambled sequence made of all
20 natural amino acids (using all 3 protonation variants for the His side chain, thus each
peptide is 22 amino acids in length). Together, conformational ensembles for these scrambled
peptides provide significant statistics for atomic SASA ranges, and they encompass the
distributions of pairwise distance distributions expected in real proteins (Figure S2.2).

For each sequence, 50 geometries of diverse structures were included in the training set
ensembles. Ensembles were generated as follows: initial conformations were generated from
fully extended structures constructed using tleap, with 1000 steps of minimization to ensure
reasonable initial geometries. This was followed by 1 µs of unrestrained MD simulation at
300 K (using a Langevin thermostat, the ff14SBonlysc[23] force field in GBNeck2[62] sol-
vent without SA term) producing 5000 conformations equally spaced in time. The cpptraj
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program[42] was used to separate each trajectory into 50 clusters using the hierarchical ag-
glomerative algorithm, based on all 22 Cα atoms. These 50 representative structures from
each peptide sequence comprised the training set ensembles. Table S2.3 shows the repre-
sentative structure of the most populated cluster for each peptide. We calculated reference
atomic SASA values for each heavy atom in each structure using a modified version of sander
(where Atom Radius for hydrogen was set to zero in icosa subroutine) in Amber 16[8].

Fitting of parameters was done as follows. Initial guesses for all 60 parameters were
randomly generated, then were optimized using l bfgs b algorithm[93] in the Python Scipy
package[94]. The objective function used for optimization was:

score =
10∑

scramble peptide=1

atoms∑
i

250∑
frame pair=1

(∆SASAatom icosa −∆SASAatom fitted)
2 (2.10)

where:
∆SASAatom i = ∆SASAframe a −∆SASAframe b (2.11)

where frame a and frame b represent two different conformations from the training set for
that peptide. As Vasilyev and Purisima[83] have pointed out, the change in the accessible
surface area is often of more interest than the absolute value. In addition, as max SASAi
is a constant for one specific SASA type, fitting to ∆SASAi results in isolation of the 30
max SASAi parameters since they cancel in the target ∆SASAi values. For these rea-
sons, we fit the 30 sets of σi and εi parameters to the SASA difference between pairs of
conformations.

Instead of iterating over all combinations of conformation pairs, we sorted the atomic
SASA of all 500 representatives, picked the 2 conformations with largest and smallest SASA
as the first pair, then the second largest and the second smallest as the second pair, and so
on. The reasons not to include all pairs of 500 conformations are (1) all 250,000 conformation
pairs per atom for one evaluation of optimization is more time-consuming, (2) many data
are redundant if each conformation to every other conformation is included, and (3) most
importantly, most of the SASA differences are quite small if all conformation pairs are
included, and the squared differences would weigh even less in the optimization function
(Equation 2.10), resulting in inefficient data use. In the end, we adopted a sorted pair
scheme that included 250 pairs of conformations for each atom in optimizations, and a
flatter distribution of SASA difference values compared to the more costly all pairs scheme
(Figure S2.3).

As discussed above, fitting the changes in SASA results in cancellation of the max SASAi
in the scoring function. One extra step of calculating the 30 max SASAi values was done
at the very end, when shielded SASAi for all atoms in the training set were calculated with
the optimized 60 parameters. For each SASA type, the max SASA was obtained by taking
the arithmetic average of the difference between the icosahedral SASA and the calculated
shielded SASA, over all atoms of that SASA type:

max SASAi =
1

N

10∑
peptide

50∑
conformations

30∑
type i

(SASAatom icosa − shielded SASAi) (2.12)

where N equals to the total numbers of atoms of that SASA type.
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Test set

The proteins displayed in Figure 1.3 were used as a test set to validate SASA estimation.
This set of proteins of diverse topologies ranging from 10 to 92 amino acids corresponds to
the set we previously used for ab initio protein folding[24]. The structural ensembles for
the test set were extracted from the protein folding trajectories in that work to get a set of
structures spanning diverse atomic and molecular SASA values to evaluate the new pairwise
model. The model system HC16 was also included. Reference data were calculated for each
structure using the ICOSA and LCPO algorithms.

2.3.3 Simulated protein systems

HC16 with helical restraints

HC16 (16-residues with ACE and NHE caps, with sequence DEDFKAVFGMTRSAFA)
consists of the hydrophobic core of HP21 (a Villin headpiece HP36 fragment). HP21 was
reported to transiently adopt native-like conformation[95] similar to that in full-length HP36.
To facilitate obtaining converged data in explicit solvent, and also to maximally isolate the
difference between simulations to the presence or absence of nonpolar solvation, we restrained

7 hydrogen bonds in the backbone of HC16 with 50 kcal/(mol·Å2
) force constant: ACE.O-

Phe47.H (1.94 Å), Asp44.O-Lys48.H (1.95 Å), Glu45.O-Ala49.H (2.41 Å), Phe47.O-Val50.H
(1.87 Å), Thr54.O-Phe58.H (1.67 Å), Arg55.O-Ala59.H (2.24 Å), Ala57.O-NHE.H (2.07 Å).
The distances for the restraints (listed respectively in the parentheses and depicted in Figure
2.2) were selected as those in the NMR structure[96] of HP36.

Unrestrained Cln025, Trp-cage, HP36 and Homeodomain

Chignolin variant CLN025 is a 10-residue mini-protein with sequence YYDPETGTWY.
Reported in 2008, CLN025 adopts a stable hairpin conformation, determined by both crys-
tallography (PDB code: 5AWL[97]) and aqueous state NMR (PDB code: 2RVD[97]).

Trp-cage variant tc5b is a 20-residue mini-protein with sequence NLYIQWLKDGGPSS-
GRPPPS. Designed and solved in NMR (PDB code: 1L2Y[98]) in 2002, it is designated as
the ‘Trp-cage’ motif because the burial of a hydrophobic Tryptophan side chain is thought
to be a driving force of its folding. It has secondary structure of an α-helix, a short 310-helix
and the Trp indole ring encapsulated in a cluster of Proline rings.

HP36 is the naturally found 36-residue Villin headpiece subdomain with a full sequence
MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF. It is recognized to fold into a
compact native state solved by NMR (PDB code:1VII[96]) with three α-helices.

Homeodomain is a 52-residue computationally re-designed variant of Drosophila
melanogaster engrailed homeodomain, with sequence MKQWSENVEEKLKEFVKRHQRIT
QEELHQYAQRLGLNEEAIRQFFEEFEQRK. The NMR solved native structure (PDB
code: 2P6J[99]) is thermally stable and also consists of three α-helices but adopts a different
fold from HP36.

Experimental melting curves for CLN025[97], Trp-cage[98] and HP36[100] were obtained
from CD experiments. The melting temperature of Homeodomain variant was measured
from CD[99]. All 4 systems were previously studied in our ab initio folding experiments[24]
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Figure 2.2: HC16 (Hydrophobic-Core 16-residue) sequence and conformation in NMR struc-
ture of HP36 (PDB code: 1VII[96]). The sequence of HP21 which has been characterized in
experiment[95] is also listed for comparison. The two helices shown in pink are restrained
with hydrogen bonds shown in black dotted lines. Side chains of three Phenylalanine (com-
prising the hydrophobic core of HP36) and capped termini are denoted.

using the same force field and solvent model used here, providing an excellent reference to
quantify the possible improvement by addition of a nonpolar solvation term.

2.3.4 MD simulation and analysis details

Explicit solvent simulations of restrained HC16

Helical restraints described in Figure 2.2 were applied to the HC16 system in explicit
solvent simulations. Two sets of simulations were initiated from two conformations: one
“restrained unfolded” and the other as observed in HP36 NMR structure. The “restrained
unfolded” conformation was generated from a short high-temperature MD simulation start-
ing from the NMR structure; after this 1 ns short MD run at 500K with helical hydrogen
bonds and chirality restrained, the conformation of maximal end-to-end distance (25.9 Å vs.
16.0 Å as in NMR structure) was equilibrated with helical restraints at 300 K as “restrained
unfolded” structure. Restrained HC16 parameterized in ff14SBonlysc[23] was solvated with
2187 TIP3P[101] water molecules in a truncated octahedral periodic box. The distance from
solute to the edge of the box was 9 Å for the “restrained unfolded” structure, and increased to
11.061 Å for the NMR structure so that the total number of atoms was equivalent for the two
simulations. For the equilibration, 10000 steps of energy minimization were first done with
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100 kcal/(mol·Å2
) restrained on all heavy atoms, followed by 100 ps of MD heated from 100

to 300 K at constant volume. Then 100 ps and 250 ps of constant pressure MD simulations

were done with 100 and 10 kcal/(mol·Å2
) force constant, respectively. Another 10000 steps

of minimization with backbone restraints of 10 kcal/(mol·Å2
) was followed by 100 ps of MD

simulation at constant pressure and temperature. Then three 100 ps simulations (with 1,

0.1, 0 kcal/(mol·Å2
) backbone restraints, respectively) were done with helical restraints. The

helical restraints were applied throughout the production runs. Replica Exchange Molecular
Dynamics (REMD) simulations were performed to help overcome viscosity barriers in explicit
solvent, using 32 replicas in the NVT ensemble; 8.0 Å was used as the non-bonded interaction
cutoff; Particle Mesh Ewald (PME) was used for long range electrostatics; Langevin dynam-
ics with 1 ps−1 collision frequency was used; thermostat temperatures ranged from 294.4 K
to 394.4 K (the full temperature ladder is reported in Table S2.4). Each replica was simu-
lated for > 2.6 µs, giving a cumulative 83 µs of simulation time and requiring about 15 days
on Tesla K20X Amber 16 GPU (CUDA) version of PMEMD. The PMF profile at 300 K was
calculated with temperature-biased weighted histogram analysis method (TWHAM)[102].

GB and GB/SA simulations of restrained HC16

SHAKE constraints[39] were applied on all hydrogen involved bonds. Langevin dynamics
with 1 ps−1 collision frequency (ntt=3) and hydrogen mass repartitioning[40] (allowing a 4
fs time step) were used in all implicit solvent simulations.

Restrained HC16 parameterized in ff14SBonlysc was simulated in GBNeck2 (igb=8) with
mbondi3 radii[62]. GB simulations without nonpolar solvation used gbsa=0. Two runs of
Langevin dynamics simulations starting from two conformations were run at 300 K, each
for 16 µs. Clustering analysis comparing pairwise RMSD between structures were done on
the last 8 µs of simulations (2 runs of 8000 frames, 16000 frames in total). The hierarchical
agglomerative algorithm in cpptraj program was used for clustering, based on all 16 Cα
atoms at a 2 Å cutoff.

REMD was used to enhance the sampling efficiency for all GB/SA simulations since
compact conformations were stabilized relative to unfolded states, and simulations at 300
K sampled high RMSD conformations too rarely for precise quantification of stability. In
Amber, gbsa=1 was used for LCPO algorithm and gbsa=3 was used for our new pairwise

model. Surface tension values (surften flag) of 5, 7, 10 and 12 cal/(mol·Å2
) were tested.

For each surface tension, two production runs starting from “restrained unfolded” and NMR
structure were simulated to 4 µs per replica of REMD with 6 replicas to get converged data;
thermostat temperatures ranged from 279.5 K to 397.9 K (see Table S2.4). It took > 60
days for GB/(LCPO)SA to generate 4 µs of simulations on 4 cpu cores for each replica,
while 4 days were sufficient to collect the same amount of data for GB/(pairwise)SA, on 1
GXT680 GPU for each replica.

GB and GB/SA simulations of unrestrained proteins

CLN025, Trp-cage, HP36 and Homeodomain variant were simulated without restraints
in REMD, employing ff14SBonlysc and GBNeck2; both LCPO and our pairwise SA were

used. Surface tension was 7 cal/(mol·Å2
) unless otherwise specified. For each system, two
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production runs starting from fully extended or NMR structure were simulated. For CLN025,
6 replicas (252.3 K – 389.1 K) REMD were done for 1.3 µs in GB, 1.5 µs in LCPO and 8 µs in
pairwise SASA. A backbone RMSD cutoff of 2.2 Å was used for calculating fraction of folded,
consistent with our previous study. For Trp-cage, 8 replicas (247.7 K – 387.3 K) REMD were
simulated for 1.7 µs in GB, 1.4 µs in LCPO and 4 µs in pairwise SASA. A backbone RMSD
cutoff of 2.0 Å was used for calculating fraction of folded. In both CLN025 and Trp-cage,
the last half of the trajectories of the two runs were used for melting curve plotting. For
Homeodomain variant, 12 replicas (288.7 K – 440.3 K) REMD were simulated for 4 µs for GB
and pairwise. A backbone RMSD cutoff of 5.0 Å was used for fraction of folded calculations.
For HP36, 8 replicas (250.0 K – 349.0 K) REMD were simulated for 4.2 µs in GB. As

simulations in LCPO used surface tension of 10 cal/(mol·Å2
) and were run for 650 ns, the

pairwise SASA used the same surface tension to be consistent. REMD simulations were run
for 24 µs to converge. Cluster analysis was done on the lowest temperature trajectories (250
K) using the same protocol as for HC16 GB trajectories, based on all 36 Cα atoms. Another
set of HP36 REMD simulations were carried out in ff14SB and GBNeck2 for 20 µs to show
the observed misfolding of HP36 could be ascribed to a force field issue.

PMF calculations

Potential of Mean Force (PMF) structure equilibria profiles were calculated using a col-
lective variable of RMSD of all Cα atoms, against native structure as in HP36. This can be
interpreted as the reconstructed free energy landscape projection onto the RMSD space. We
first histogramed the RMSD values for all sampled structures at 300 K (either directly from
MD simulations running at 300 K or extracting 300 K trajectories from REMD simulations),
using a bin size of 0.1, in the range 0-7 Å. We then defined the relative free energy for each
bin, using Equation 2.13:

∆Gi = −RTlogNi

N
(2.13)

where R is the gas constant (1.9858775 × 10−3kcal/(mol·K)), T is 300 K, and N is the
largest bin population. The error bars on PMF plots reflect the absolute deviation of free
energies for each bin calculated from two independent simulations starting from different
conformations.

2.4 Results and Discussions

2.4.1 SASA estimation by the proposed algorithm

Parameterization on atomic SASA of training set

As stated in Methods, we defined 30 SASA types, each with two parameters σ and ε, to
characterize variation of SASA with the possible pairwise atomic contacts found in proteins.
All 60 parameters were optimized to achieve the least square errors with respect to the
ICOSA-based SASA numerical changes for all the heavy atoms in the training set. The
optimization took multiple rounds to best reproduce ∆SASAatom icosa in Equation 2.10.
We verified that reducing the SASA types or the peptide species worsens the fit quality, but
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using fewer frames for each peptide ensemble made less difference. The resulting σ and ε
values are provided in Table S2.2, along with the calculated max SASA parameters.

Figure 2.3: 2D histograms of pairwise atomic SASA of each SASA type, versus ICOSA-based
numerical values in the training set. Perfect agreement would coincide with the diagonal
dashed lines. The color indicates the kernel density estimated using scipy gaussian kde[103].

The final set of parameters reasonably reproduces the atomic SASA for heavy atoms in
the trained peptides, shown separately for each of the 30 SASA types in Figure 2.3. Among
all the types, hydrogen atoms are defined as ‘1H’ type and neglected in both reference and
estimation. Nitrogen atoms ‘4NCC’ that bond with 3 other heavy atoms in sp3 hybridization
were set to zero SASA, for they are highly buried in trained peptides and test proteins. The
estimated atomic SASA values scatter around the diagonals that represent perfect fittings.
In particular, the diagonals go through the densest data (dark red) regions for all atom
types, which indicate excellent agreement for the most frequently sampled atomic SASA
values. The coefficients of determination (R2 for the linear regression between ICOSA values
and our estimations) vary from 0.28 (‘5CCN2’) to 0.91 (‘1SC’). However, those with lower
correlations tend to adopt a small range of SASA values (e.g. ‘2NCC’, “3CCC”); the R2 for
atom types sampling atomic SASA over 20 Å are all above 0.50. For the atom types that
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seldom exposed to solvent (e.g. “4xxx”, 5xxx”), the pairwise estimate also indicates burial
with close to 0 Å atomic SASA.

For the totally buried heavy atoms, our algorithm sometimes produces negative SASA
values. The appearance of such unphysical results and the inaccuracies of estimation root
in the simplification of a two-body algorithm. This pairwise burial algorithm assumes the
mutually buried surface areas could be averaged to a pairwise fashion, which could be cap-
tured by one monotonic function analytically. But we could tell from the estimation that
this assumption works better for the exposed atoms. When our fitting works well for the
more exposed instances of a SASA type, the accuracy suffers for the most buried exam-
ples of that SASA type. For example, for the ‘1SC’ type atoms that have SASA > 30

Å
2
, data points fall closely around the diagonal and visually correlate well, compared with

lower accuracy for the instances with SASA < 30 Å
2
. This observation applies to almost

all other SASA types. When atoms become deeply buried, our current algorithm continues
to assign (small) shielding contributions from atoms in the tail of the sigmoidal function. A
better-designed switching function could eliminate these negative SASA values, but in the
current implementation we did not explore this more since our goal was to develop a simple,
fast approach, and the frequency of observing the slightly negative SASA values is quite low
overall. Furthermore, the changes in the SASA are more important than the absolute values.

2.4.2 Estimation of molecular SASA in test set

Generally, we would expect that high correlations of the atomic SASA values (calculated
to obtain forces) would also result in accurate molecular SASA values when the atomic values
are summed. However, we observed that the sum of estimated atomic SASA values (Figure
S2.4) systematically deviates from the numerical molecular values(Figure S2.5), which was
also encountered in Dynerman et al.’s work where computed SASA values (desolvation energy
changes calculated from SASA, to be specific) systematically deviate from numerical numbers
in a proportional manner[81]. We ascribe it to be a negative consequence of tolerating
inaccuracies in atomic SASA pairwise estimation. The occurrence of negative SASAs, along
with correlation in errors for different atoms, attribute to cumulative errors in molecular
SASA estimations, which was further adjusted by linear transformations.

Given the systematic error from summing our simple pairwise atomic SASA estimates,
we decided to empirically adjust the sum of our atomic estimations to more closely match
molecular values. By comparing total SASA values we found that a universal scaling factor
0.6 worked well; in terms of energy and forces, this is equivalent to scaling the designated
surface tension γ by 0.6. In Amber, we encoded the scaling factor directly so users could
obtain similar results for different SASA algorithms when setting a particular surface tension
value. It is recommended for the users to bear in mind that the total SASA in Figure 2.4 are
obtained from the atomic SASA shown in Figure S2.4 using the following transformation
(see detailed description and Figure S2.6):

SASAmolecule = adj max SASA− 0.6×
natoms∑

i

shield SASAi (2.14)
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Figure 2.4: 2D histograms for each protein, showing fitted molecular SASA versus ICOSA
numerical values for the test set. Perfect agreement is indicated by the diagonal dashed
lines. The color indicates the kernel density estimated using scipy gaussian kde[103].

adj max SASA = 0.6814
natoms∑

i

max SASAi + 361.1 (2.15)

After transformations using Equation 2.14 and 2.15, the estimated molecular SASA
values become better estimates of the numerical values for the 18 test protein systems in
Figure 2.4. The coefficients of determination range from 0.54 for BBL, 0.69 for λ-repressor,
to above 0.8 for CLN025, Trp-cage, Fip35, GTT, HP36, HC16, NTL9 (39 and 52 residues),
ProteinB, Homeodomain, NuG2variant, Hypothetical protein 1WHZ, α3D, and Top7. Over-
all, in 15 out of 18 protein test systems, we can estimate the SASA to well correlate with
numerical calculations (Pearson correlation efficient, R2 > 0.81) across the range of sampled
conformations. This is encouraging given that the parameters were trained on short pep-
tides with scrambled sequences; even though pairwise atom contacts are similar between the
training and test set, the transferability to larger proteins is still reassuring.

In most cases, our fast estimations tend to slightly overestimate the ICOSA molec-
ular SASA differences (indicated by slope < 1), but the same effect is also observed in
LCPO–based SASA predictions for the same test set (Figure S2.7); this can be attenuated
by decreasing the chosen surface tension. Notably, the cases for which our estimation quali-
ties are worse than average (BBA, BBL, NuG2variant and λ-repressor) are also challenging
and among the worst predictions for LCPO. This suggests there may be some specificities in
these proteins, where local geometric features are insufficient for predicting solvation prop-
erties. It is possible that the estimation qualities could be further improved by refining the
functional forms for our pairwise estimates, or fitting shielding parameters for atom type
pairs. However, a SASA-only nonpolar term is itself a crude estimation of non-electrostatic
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solvation, perhaps suggests that adding further complexity and computation cost may not
be worthwhile. However, before this work, except nonpolar term, all the other energy terms
were accessible on GPUs. Having the nonpolar term left out hindered the possibility of
extensive tests with a more complete description of solvation, and quantitative analysis of
the impact of SASA-based nonpolar solvation on well-converged ensembles for non-trivial
systems. Thus our focus here is not on an ideal SASA calculation, but what benefits, if any,
can be obtained from simple SASA-based approaches used during protein MD simulations.
Once these are implemented in a form fast enough to converge ensembles for non-trivial
proteins, it will become possible to examine the extent to which further optimization can
improve agreement with experiment. In the next section, the acceleration in MD simulations
achieved by GPU implementation is illustrated and described in detail. The efficiency of our
algorithm is compared to LCPO. Convergence is comparable within the same simulation
time, but the overall wallclock speed (computational cost) of the simulations is sped up by
more than an order of magnitude using our approach.

2.4.3 Speed up in MD simulations

After implementation in the Amber software, simulation benchmarks establishing the
performance of simulating unrestrained HP36 are shown in Figure 2.5 below. On CPUs,
simulations using GB, GB/SA (LCPO) and GB/SA (pairwise) are similar in speed, with
LCPO being slightly slower. However, our method was really targeted to GPU-style mas-
sive parallelism. Compared to less than 40 ns/day with 8-core CPU clusters, the slowest
GPU calculation (GTX 970) provides 665 ns/day using our pairwise approach. Importantly,
adding the pairwise SASA calculation incurs little additional overhead compared to simu-
lations without it (676 ns/day). As the compute capability of GPU increases, the speed
accelerations over LCPO reached 31x (single GTX 980). These accelerations are compa-
rable to standard Amber GPU performance[61], and are also consistent with our design of
the algorithm. The only information needed is how far each central heavy atom is from its
close neighbor atoms within the solvent accessible distances, and with no recursive neighbor-
neighbor calculations required. There distances have already been pre-calculated and cached
for electrostatic, van der Waals, and polar part of solvation computation and the SASA calcu-
lation can be embedded in the same loops and parallel decomposition schemes. Our nonpolar
calculation is also implemented fully on the GPU, without the need to transfer back and
forth between GPUs and CPUs, as is necessary by the current LCPO code.

The parameter set for our proposed algorithm was coded in a modified version of Amber
version 16[8]. Setting the gbsa flag to 3 in GB simulations activates GB/SA using the new
nonpolar solvation term in the sander, pmemd or pmemd.cuda (all precisions) programs.
Compared with the existing hybrid GPU/CPU algorithm[104] needing the CPUs for the
LCPO algorithm and GPU for remaining terms in the force field, our method calculates all
energy/force terms on GPUs, if designated, thus accelerates the MD production runs by tens
of times.
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Figure 2.5: Performance benchmarks on CPUs and single gaming GPUs, simulating HP36
in GB and GB/SA (LCPO and our pairwise method) models. The speed up multiples
(percentages) denoted are calculated from the respective ns simulation/day achieved in our
method divided by that obtained using LCPO on the same architecture.

2.4.4 Stability of the hydrophobic core in the HC16 model system

Calibration model system and rationale

We next carried out a quantitative comparison of explicit and implicit solvent results on
a controlled peptide fragment, in which the role of the solvent model could be isolated from
other variables that confound direct comparison to experiment such as protein force field
accuracy. We use the hydrophobic core of HP36, a peptide of 16 residues termed “HC16”
(Figure 2.2), including a neutral acetyl capping group (ACE) at the N-terminus and ami-
dation (NHE) at the C-terminus. HC16 retains the structured region of HP21, which was
previously reported to adopt HP36 native-like structure as a fragment[95]. Used as a model
system for hydrophobic residue clustering study, this packed hydrophobic core is made of side
chains protruding from two α-helices, particularly the three phenylalanine residues, Phe47,
Phe51, and Phe58 (we adopt the widely used numbering of residues derived from intact
Villin headpiece). On such a small and fast folding peptide, it is more practical to obtain
converged sampling across available configuration spaces, using both explicit and implicit
solvent models. As stated earlier, explicit solvent, by default, contains all solvation effect
including nonpolar interactions, whereas implicit solvent simulations with and without non-
polar term, are likely to show variations in the configuration space of HC16. The HC16 model
system is precisely controlled by setting nonpolar term as the single variable in benchmark
simulations; we hypothesize that when the two helices in HC16 are rigorously restrained to
the secondary structures adopted in folded conformations, the thermodynamic stability in
hydrophobic core formation and breakdown is dominated by the effectiveness of nonpolar
term. We restrained the backbone of the two helices and sampled their relative orientation
and packing in MD. Restraining the helices has the double benefit of (1) simplifying sam-
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pling in explicit solvent (still highly challenging to fully converge for 16 amino acids), and
(2) reducing the potential influence of differences in secondary structure propensity from the
polar portion of the implicit/explicit solvent[105] (although we note that the GBneck2 model
used here has excellent agreement with TIP3P in this respect[62]). Thus, our expectation is
that the discrepancies observed between explicit and implicit solvent simulation ensembles
should largely arise from the differences in the nonpolar solvation treatment.

In the restrained HC16 model system, we used consistent computational methods and
simulation protocols except for the nonpolar term: GB: GB as the polar term and no non-
polar term used; TIP3P:TIP3P as a full solvation description of both polar and nonpolar
terms; and GB/SA: GB as the polar term and nonpolar term incorporated through SASA,
modulated by scaling the surface tension. Comparing ensembles from LCPO and our pair-
wise method evaluates our SASA approximation, and comparing the TIP3P, GB and GB/SA
simulations allows tuning of an appropriate surface tension value and evaluation of the extent
to which this approximation can improve reproduction of explicit solvent results.

2.4.5 Quantification of discrepancies between GB and TIP3P

As stated earlier, proteins solvated in GB model alone exhibit low folding stability[24].
We hypothesized that this is due to lack of nonpolar solvation stabilizing the hydrophobic
core, and that an explicit solvent model like TIP3P may produce a more accurate result.
Therefore, we first investigate structurally and energetically the conformational equilibrium
of HC16 in both GB and TIP3P to see if stability differences are recapitulated, by comparing
well-converged simulations that are largely identical except for nonpolar solvation.

Although the PMF profiles all exhibit dominant global minima at low RMSD values as
shown in Figure 2.6A, differences in the nonnegligible stability manifest discrepancies in
the sampled structural ensembles. Without the nonpolar term, GB predicts a smaller energy
gap and flatter energy surface for the unfolded conformations. The GB PMF falls below the
TIP3P PMF as soon as the RMSD advances beyond the native-like minimum, with maximum
energy difference close to 2 kcal/mol (at around 4 Å Cα-RMSD). Furthermore, the cluster
analysis (see Table S2.5) of the simulated GB trajectory manifests the compositions of
three dominant conformations of various SASA values (shown in Figure 2.6C). Compared
to the second dominant cluster (4.1 Å Cα-RMSD, cluster 2), the native cluster (1.0 Å Cα-
RMSD, cluster 1) has smaller SASA values, suggesting that a nonpolar term could stabilize
the native-like cluster by 1-2 kcal/mol. The third cluster (5.4 Å Cα-RMSD), with SASA
falling between cluster 1 and 2, would also be modestly stabilized with respect to cluster 2.
The combination of the lower hydrophobic core stability in GB MD, along with the difference
in SASA between the clusters with and without hydrophobic core suggests that a SASA-
based algorithm might appropriately stabilize the native-like cluster and improve agreement
between implicit and explicit solvent.

31



Figure 2.6: Structural equilibria of restrained HC16 simulated in GB, TIP3P and GB/SA
water models at 300 K. A. PMFs for structural equilibria of HC16 measured by Cα-RMSD,
by varying the effectiveness of nonpolar solvation, from no nonpolar effect (pure GB), to
increased nonpolar effect as surface tensions in GB/SA simulations increase, and to full
solvation with TIP3P; B. PMFs for structural equilibria of HC16 measured by Cα-RMSD
comparing two GB/SA methods (LCPO and our method) and GB; C.2D scatter plot of
ICOSA/Numerical SASA versus Cα-RMSD against NMR structure fragment of HC16. The
top three cluster representative structures are indicated in the figure.

2.4.6 The new pairwise algorithm closely matches LCPO

Before we compare the effect of SASA-based nonpolar solvation (GB/SA) to explicit
solvent result, we first compared the effects obtained using two different GB/SA methods
in Amber: gbsa=1 and 3 for LCPO and our pairwise method, respectively. This allows
us to evaluate the ability of our pairwise approximation to recapitulate the ensemble shifts
obtained with LCPO, as compared to the analysis in 2.4.2 and Figure S2.7 that focused
solely on the accuracy with which we could reproduce LCPO-based SASA values.

As shown in Figure 2.6B, the PMFs illustrating the free energy landscape profiles using
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LCPO and our method agree with each other quite well (within ± 0.3 kcal/mol) when the
same surface tension value is used for both methods. Using either model, increasing the
surface tension results in less unfolded structures in the structural ensemble, which suggests
that at least for this peptide, the nonpolar term plays a modulating role in hydrophobic core
stability in implicit solvent.

There are still small local disagreements between our method and LCPO, at the scale of <
0.3 kcal/mol. These are reasonable for two reasons: (1) the SASA estimations for atoms and
molecules are of somewhat different accuracies compared with the numerical references; (2)
although the PMF uncertainties appear small when using the RMSD as collective variable,
these may underestimate the true uncertainty in the data. In Figure 2.7 we show an
alternate convergence analysis in which the population of native-like structures (< 2.0 Å all
Cα-RMSD) is accumulated as a function of time for two independent REMD simulations for
each of the two GBSA methods. Even after several microseconds of REMD, the fractions of
native-like vary for LCPO by around 10% depending on the initial structure. Our pairwise
model appears to converge more quickly than LCPO, but more extensive testing would be
needed to determine the generality of this observation.

Figure 2.7: Fraction of folded calculated on HC16 for each temperature replica throughout
the REMD simulations. Convergences from two different initial starting structures (NMR:
opaque lines, unfolded: semi-transparent lines) are observed in our method (solid lines) and

LCPO (dashed lines) using surface tension of 5 cal/(mol·Å2
).
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2.4.7 GB/SA solvation with reasonable surface tension can repro-
duce TIP3P profile

When nonpolar solvation energy is incorporated, GB/SA models could resurface the
energy landscapes of HC16 structural ensembles towards the TIP3P result, by stabilizing
the dominant native-like conformation while sampling less of the unfolded conformations

(Figure 2.6C). A surface tension γ at 7 cal/(mol·Å2
) is found to agree the best with

TIP3P result. The choice of the calibrated surface tension is close to the value of 7.2
cal/(mol·Å2

) used in MM/PBSA and MM/GBSA methods implemented in Amber as the
Free Energy Workflow (FEW[106]); this is encouraging that the good agreement obtained
with our method is not simply a result of empirical fitting.

Further consistency in GB/SA and TIP3P simulations is evident with closer examination
of the PMF profiles shown in Figure 2.6A. When the nonpolar term is absent, the cluster 2
structure (4.1 Å Cα-RMSD) with extended helix shown in Figure 2.6C has an occurrence
of 15.0% (see occurrence data in Table S2.5) at 300 K, measured by within 2 Å from
this 4.1 Å misfolded structure. This structural ensemble is not abundant in explicit solvent
results, with occurrence < 0.2% in TIP3P ensemble. In GB/SA simulations, this misfolded

structure is diminished to < 2% (in two GB/SA methods with γ = 7 cal/(mol·Å2
)). But we

also noticed that by increasing surface tension, in both LCPO algorithm and our method,
another energy minima appears at around 5.4 Å in Figure 2.6C with close to 3% occurrence,
with respect to < 0.2% in explicit solvent results. This 5.4 Å misfolded structure inversely
orients the two helices of HC16 with misplacement of core Phenylalanine residues, and of
relatively smaller SASA value. It is hard to attribute the cause as it could be a force field or
solvent inaccuracy, or it may also be the convergence is still challenging in explicit solvent
simulations.

2.4.8 Application to unrestrained proteins

Our algorithm provides a fast way to estimate the SASA of atoms and molecules in
various conformations. Validated on a carefully controlled short peptide, we demonstrated
that the nonpolar term is beneficial for core stability. With GPU compatibility, it is now
possible to rapidly evaluate the extent to which a simple SASA-based nonpolar term can
improve prediction of complex conformational ensembles. Such analyses on multiple systems
were largely out of reach in the past due to the computational cost of SASA calculations on
larger peptides and proteins during MD.

We included the GPU-compatible nonpolar solvation term while simulating the four
proteins (CLN025, Trp-cage tc5b, HP36 and Homeodomain variant) without restraints. The
simulated ensembles, with nonpolar term (our method and LCPO) or without (GB polar
solvation only), were compared to experimental measures (CD or NMR). As always, one
must use caution in such comparisons, since inaccuracies in the solute force field also impact
agreement with experiment. Furthermore, the accuracy of the solvent models employed here
is likely less reliable away from 300 K. Nevertheless, the trends in the data may provide
useful insight within these limitations.

As shown in Figure 2.8A, compared with CLN025 GB-only simulations, conformational
ensembles across the simulated temperature range show higher population of native-like
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conformations using our SASA method, which also agrees reasonably with LCPO results.
While still not as thermally stable as measured in CD[97], the improvement in stabilizing
β-hairpin structures is encouraging; experimentally, the fraction of native folded hairpin is
over 90% at 300 K, while it is less than 20% in our Amber ff14SBonlysc and GBNeck2
results without SASA. By incorporating the nonpolar solvation term, this value is elevated
to around 70% in our method and around 80% in LCPO. This discrepancy between these two
nonpolar methods corresponds to only around 0.30 kcal/mol, consistent with the differences
observed for HC16. It is possible that better agreement could be obtained by increasing

surface tension from 7 cal/(mol·Å2
) to a larger value, but we decided to only test the value

optimized using TIP3P as discussed above.
We next simulated Trp-cage tc5b, and again observed a significantly better agreement

with experiment when the nonpolar term was added (Figure 2.8B). With GB/SA, we
obtained near-quantitative agreement between our simulated Trp-cage tc5b and experimental
thermal stability profiles. This further suggests that the ability to perform GB/SA with
adequate sampling may significantly improve protein modeling efforts. At 300 K, our method
and LCPO both accurately reproduce the experimental value of around 80%, compared to
less than 30% fraction of folded as seen in the GB-only result. Our predicted Tm of 323K also
is close to the experimental value of around 317 K[98]. This thermal stability of Trp-cage
shows better accuracy than the GB-only model (predicted Tm at 283K) and other models,
compared with predicted Tm down-shifted to 206K[107] using Charmm22* force field and
modified TIP3P water model, or up-shifted to above 400K using ff94 force field and GB-HCT
model[108], or OPLS-AA force field and TIP3P water[109].

When our pairwise SASA-based nonpolar term is incorporated in Homeodomain vari-
ant simulations, the increase of thermal stability with respect to GB-only is again observed
(Figure 2.8C), although has not elevated to what experimental measurements are, com-
pared to Trp-cage tc5b. Better agreement is possibly achievable with a larger surface tension,
similar with CLN025. However, as the fold and topology of a protein gets more complex,
ascribing the simulated thermal instability to the lack of nonpolar term alone needs a second
thought; as more atoms and degrees of freedom are integrated in the simulations, the inac-
curacies in models are likely to be magnified instead of being cancelled or concealed. And
the errors in computational models could come from solvent models as well as force fields.

In the case of HP36 Villin headpiece, when only polar solvation with GB is included,
at 300 K, less than 5% of conformations adopt folded structures (measured by fractions of
conformations < 3.5 Å Cα-RMSD excluding flexible termini), see Figure 2.8D. With our
pairwise SASA-based nonpolar term, the stability of native-like conformations is predicted
to be over 20% at 300 K, which is much higher. At 300 K, the two native-like conformations
populated in GB trajectory that have occurrences of 1.36% and 1.70%, have been stabilized
to be 18.1% and 14.1% shown as cluster 1 and cluster 3 in Figure 2.9A (see detailed measure-
ments in Supporting Information Table S2.6). In GB-only results, the simulated melting
curve has shifted to low temperature by around 100K (Figure 2.8D).

Interestingly, when the SASA term is added, the native-like structure is significantly
increased in stability at 300 K and above, as we observed for CLN025 and Trp-cage, however,
decreasing fractions of folded at 288.4 K and below result in a melting curve of a downward
bell shape. Further analysis of the lower temperatures trajectories indicates that a misfolded
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Figure 2.8: Thermal stability profiles for A. CLN025, B. Trp-cage tc5b and C. Homeodomain;
D. HP36 respectively in GB and GB/SA REMD simulations, compared to experimental data.

structure become more dominant at lower temperatures, which reduces the fraction of folded.
At 250 K, the previously populated native-like[24] structures (cluster 1, 30.4% and cluster
3, 18.3%) are diminished to 8.69% and 2.75% respectively in our GB/SA simulations (see
Figure 2.9B and more details in Table S2.6). A misfolded structure ensemble instead
occupies 75.9% of our GB/SA simulations shown as cluster 2 in Figure 2.9B. Compared
to native-like structures, this 6.87 Å misfolded structure ensemble of smaller SASA has
been stabilized by around 2 kcal/mol in potential energy contributed from nonpolar term
(see data in Table S2.6). As a result, the native-like conformations are predicted as less
favorable structural ensembles. Consequently, at all temperatures in REMD simulations,
NMR structures unfold in the first hundreds of nanoseconds (Figure S2.8), which is not
only observed with our method, but also with LCPO.

Two explanations for both GB/SA methods destabilizing the native structure of HP36
are explored and discussed. One explanation lies in force field as the SASA term may not
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Figure 2.9: HP36 simulated structural equilibria using four models (GB with 14SBonlysc,
GB/SA with 14SBonlysc, GB with 14SB, and GB/SA with 14SB). A. 2D scatter plot of our
estimated SASA-based nonpolar energy SASA versus Cα-RMSD excluding flexible termini
against NMR structure for all structures in the combined 250 K trajectories simulated using
four models. The structures clustered into top 7 populated clusters are black dots, and
the rest structures are in gray. The top 7 cluster representatives are colored by secondary
structures and illustrated with arrows pointing from their corresponding (RMSD, SASA)
coordinates shown as red dots. B. Comparison of the top 7 cluster populations across four
models. Each bar in the chart refers to the fraction (population) of a certain cluster in
the simulated 250 K trajectory using a certain model. Cα-RMSD excluding flexible termini
values and the cluster order are denoted on the x-axis. The error bars are calculated from
the first and second halves of trajectory.

be the cause of the error, despite the misfolded structure being lower in SASA. It is possible
that the misfolded structure is an artifact arising from insufficient force field penalization.
Another explanation is that the SASA-based nonpolar term fails to accurately recapitulate
the missing nonpolar effect. The solute-solvent dispersive interactions might be indispensable
for HP36 stability in simulations; as suggested by Gallicchio et al.[49], this dispersive term
is almost independent of SASA but depend strongly on atomic composition.

Force field 14SBonlysc has been employed throughout all the training (HC16) and test
cases (CLN025, Trp-cage and Homeodomain), as it was previously demonstrated to be ca-
pable of folding small proteins[24] with GBNeck2[62] implicit solvent. But its backbone
parameters have not reached optimal secondary structure balances[23]. Empirical adjust-
ment in the backbone φ parameter published as ff14SB[23] (i.e. ff14SBonlysc with mod1φ
backbone parameters), although trained to reproduce Ala3 populations in TIP3P at 300
K[19], has been shown to stabilize the right-handed α and ppII dihedrals over β for all
amino acids in TIP3P[23]. We thus applied ff14SB with GB and GB/SA implicit solvent to
simulate HP36. As seen in Figure 2.8D, modified backbone force field does produce more
consistent outcomes and backup our hypothesis that force field attributes to the unfolding
of HP36 native structure in GB/SA solvation. Due to the lack of nonpolar term, GB-only
simulations using force field 14SBonlysc and 14SB predict similar melting behavior for HP36
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in the simulated temperature range; the predicted Tm is around 100 K lower (346 K in
experiment[100] versus < 250 K in GB) using both force fields. With SASA term, unlike
the misfolded behavior using ff14SBonlysc, ff14SB is able to better maintain the balance in
secondary structure propensities, elevate the stability of HP36 at all simulated temperatures
and match better with experimental melting data[100]. Figure 2.9B illustrates and Table
S2.6 summarizes the predicted structural ensembles at 250 K and 300 K compared across
four models. With SASA-based nonpolar term, folded structures (native-like or misfolded)
are stabilized with close to 80% fractions, while more intermediate ensembles (cluster 4-7,
denoted as c4, c5, c6 and c7 in Figure 2.9A and 2.9B) populate at 250 K without this
nonpolar term for both force fields. This in turn backups our overall hypothesis that non-
polar solvation is not a negligible term in implicit solvation, instead, it could reshape the
potential energy landscape thus it is crucial for accurate implicit solvation, as were observed
in all the proteins demonstrated in this work.

Although clear weaknesses have been recognized, the SASA-based nonpolar model has
been shown to work reasonably well with extensive parameterization against experimental
solvation free energies of small nonpolar molecules[89, 110]. The application in biomolecules
faces more challenges due to the uneconomic trade-off between computational cost and ac-
curacy issues. Complete nonpolar solvation is a combination of solute-solvent dispersion
energy (∆Gvdw)[50, 54], along with the hydrophobic effect and surface tension that depend
on the size scale and shape[89, 111, 112, 113], the curvature[112], and temperature[113] of
molecules. Methods to accurately calculate these contributions have not reached a consensus
and are not readily calculated on GPUs to test impact on complex protein ensembles. But
with the implementation of our new algorithm, despite its relative crudeness, the bottle-
neck in computational cost is overcome with order of magnitude accelerations for peptide
and protein modeling. This can permit a greater exploration of success and failure cases
for more complex biomolecules, possibly improving structure prediction and refinement, and
also providing insight into future, more accurate nonpolar solvation models.

2.5 Conclusion

In this work, we proposed a fast, GPU-friendly pairwise SASA-based nonpolar solvation
approach for protein simulations inspired by Amber’s pairwise GB solvation model[62, 66,
114, 115] development. In this approach, we developed a novel algorithm to estimate the
atomic and molecular SASAs of proteins, which results in comparable accuracy as LCPO
algorithm[82] in reproducing numerical ICOSA[77] SASA values. By calculating pairwise
burial SASA from atom distances, our method accelerates MD simulations up to 30 times
compared to LCPO implementation, with only around 20% overhead compared to CPU or
GPU simulations that omit the SASA term. The main speed advance arises from employing
GPU devices for SASA calculations and reducing constant communications with CPUs; the
previous CPU/GPU implementation [104] using LCPO suffers from dramatic speed loss when
the SASA calculation for every time integration step is still done on CPUs, even though
all other energy terms are evaluated on the GPU[61]. Compared with other analytical
approaches [79, 80, 82, 84, 85] including LCPO, our two-body algorithm is suitable for
inexpensive gaming GPU devices that are built for highly parallelization calculations.
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To ensure that our purely two-body algorithm is able to capture reasonably the SASA
values in proteins, we pre-treat all protein atoms by grouping them into SASA types. This
allows implicit incorporation of many-body contributions based on local geometry, and the
remaining neighbor shielding is calculated using the non-recursive pair distances. Parameters
were optimized on a peptide library covering all of the defined protein SASA types, sampling
diverse conformations and SASA ranges. The objective function for training was designed
to reproduce the SASA changes in atomic numerical ICOSA values, instead of the absolute
atomic or molecular SASA numbers. The resulting 90 parameters are encoded in a new
implementation as gbsa=3 in Amber.

The evaluation of our nonpolar term and the calibration of surface tension are done in a
helically restrained system which is derived from the hydrophobic core of HP36. This small
peptide is also simulated in LCPO and explicit solvent TIP3P. Our method achieves similar

outcomes as LCPO as well as TIP3P solvent when surface tension adopts 7 cal/(mol·Å2
).

Four small proteins (CLN025, Trp-cage, Homeodomain and HP36) without restraints are
simulated and compared to experimental results. The simulated melting curves for CLN025,
Trp-cage and Homeodomain, with nonpolar term, are more consistent with experimental
measures compared to without this term. Our method reasonably reproduces LCPO algo-
rithm. In the case of HP36, it is more complicated. HP36 for both LCPO and our method,
destabilize the NMR structure but switching to ff14SB rescues the situation, which points
out the limitation in force field accuracy.

Compared with highly challenging convergence, much less sensitive thermal profiles[116]
and misfolded structures[26] observed in explicit solvents, it is promising that with a non-
polar term included, protein modeling in implicit solvent continues to be gaining in physical
accuracy as well as increasing in speed. This is an important distinction since current
protein simulations are typically limited by conformational sampling, rather than accuracy
(especially for protein folding/misfolding, aggregation, IDPs and many more areas in which
simulations could provide valuable insight).

2.6 Supporting Information

Definition of SASA types and parameters

We defined 30 atom types (just for SASA estimation, so we term them SASA types) based
on one atom’s bonded heavy atoms and hybridization state. The nomenclature system of
SASA type is 1 digit followed by several capital letters. The digit indicates the category the
central atom falls into, depending on how many heavy atoms are bonded to the central atom
or the just the group index. For example, for Carbon atoms, we categorize their bonding
environments into 5 groups, group 1 means the central atom is single bonded to one heavy
atom, group 2 means it is bonded to two heavy atoms. As for group 3, it also contains
two heavy atoms bonded central carbons, but instead of a sp3 hybridization as in group 2,
the central carbon is double-bonded (or conjugated to) one or two heavy atoms, so that the
bond lengths in group 3 are shorter than those in group 2, therefore less exposed to solvent
are the central carbons in group 3 than those in group 2. Furthermore, in group 4, three
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heavy atoms are bonded with the central carbon and in group 5, there are conjugated double
bonds so that the central atoms in group 4 and 5 are categorized respectively. Depending
on the element type of the heavy atoms, the 5 groups are further divided into sub-groups.
All the detailed division and definitions are included in Table S2.1 below.

Description of multiple rounds of optimization

The initial parameters for σ were randomized in the range of 2.7-3.6 Å, and the range for

ε was 1.5-1.9 Å
2
. When we attempted the optimizations by varying functional forms, m and

n values, it was always the best performed parameter set saved and used as input for the
next round of minimization; the finial parameters were not bounded to the initial ranges.
There were four rounds of optimizations, each searching for the best option for one thing.
In the first two rounds, the functional form used was hyperbolic function, as was for the
vdw dispersion energy. The objective function was molecular SASA and residual SASA. In
the first round we used the hyperbolic functional form to optimize molecular SASA, starting
at n=6 (same order as van der Waals dispersion term); with the converged parameter set
outcome, the second round of optimization was made of 6 runs optimizing molecular SASA
by varying the n value from 1 to 6, we found n=3 with a cutoff at 12 Å or n=4 with no
cutoff performed the best; then we kept the two parameter sets, applied to MD simulations
but found that we could not reproduce LCPO results. Then we changed to the current
functional form, aiming to minimize the atomic SASA differences for another round. With
the two sets from previous fitting, one of the resulting parameter set assigned 0 to Cα atoms
(4CCN SASA type), the simulation results are not as effective either, while in the other set,
Cα atoms contribute to pairwise shield SASA, and LCPO could be reproduced effectively,
so we selected this parameter set.

The derivation of shield SASA formula

When m=12, n=6, the van der Waals Lennard-Jones potential is an expression as below:

formula(vdw) = εi,j((
σi,j
Ri,j

)12 − (2
σi,j
Ri,j

)6) (S2.1)

But the more general form is as below:

formula(vdw − like) = εi,j(

n

m− n
σmi,j

(Ri,j)m
−

m

m− n
σni,j

(Ri,j)n
) (S2.2)

A, B, and C steps correspond to the transformations described in Figure S2.1 below:

formula(afterA) = εi,j(

n

m− n
σmi,j

(−Ri,j)m
−

m

m− n
σni,j

(−Ri,j)n
) (S2.3)

formula(afterB) = εi,j(

n

m− n
σmi,j

(cutoffi,j + σi,j −Ri,j)m
−

m

m− n
σni,j

(cutoffi,j + σi,j −Ri,j)n
) (S2.4)
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formula(afterC) = εi,j(

n

m− n
σmi,j

(cutoffi,j + σi,j −Ri,j)m
−

m

m− n
σni,j

(cutoffi,j + σi,j −Ri,j)n
) + εi,j (S2.5)

Then for the fractions

n

m− n
σmi,j

(cutoffi,j + σi,j −Ri,j)m
, to divide σmi,j simultaneously for the denom-

inator and numerator, and

m

m− n
σni,j

(cutoffi,j + σi,j −Ri,j)n
, to divide σni,j for the denominator and

numerator, we will get:

εi,j(

n

m− n

(1 +
cutoffi,j −Ri,j

σi,j
)m
−

m

m− n

(1 +
cutoffi,j −Ri,j

σi,j
)n

) + εi,j (S2.6)

which is Equation 2.5 on Page 19 when Ri,j < cutoffi,j.

Figure S2.1: Transformation of our formula (Equation S6) from vdw function (Equation S1,
more general form Equation S2) in schematic representations. A. starting from vdw function
(only the beyond vdw radius part is kept, shown in solid gray line on the right side of the
y axis), to reflect it by y-axis results in Equation S3; B. right shift it by σi,j + cutoffi,j
results in Equation S4; C. up shift the curve by εi,j results in Equation S5, which is the (0,
cutoffi,j) ; D. a comparison of our final formula and vdw formula.
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Table S2.1: Defined 30 SASA types and their occurrences in the training and test sets

 

Element 
Hybri-
dizatio

n 
Generic formula 

SASA 
type 

Locations 

Atom 
No. in 

training 
set 

Atom 
No. in 
test set

Atom 
radius 

Carbon 

sp3 

 
1C-X 

1CC Ala side chain 80 444 

1.7 

1CN NME 10 0 

1CS Met side chain 10 18

 
2CC-X 

2CCC 
Arg, Lys, Pro, Trp, Tyr, 

Phe, His side chain 
220 914 

2CCN 
Arg, Lys, Gly, Pro side 

chain 
40 220 

2CCO Ser side chain 10 36

2CCS Cys, Met side chain 20 18

sp2 

 
 

 
3-XYZ 

3CC Tyr, Phe, Trp side chain 130 404 

3CCC Thr, Phe, Trp side chain 40 101 

3CCN His, Trp side chain 40 24

3CCO Tyr side chain 10 29

3CNN His side chain 30 12

sp3 

 
4CC-X 

4CCC Ile, Leu, Val side chain 30 155 

4CCN all backbone  210 787 

4CCO Thr side chain 10 46

sp2 

5C-XY

5CCN
1 

Trp side chain 10 12

5CCN
2 

His side chain 30 12

5CNN Arg side chain 10 44

5CNO
Backbone and Asn, Gln 

side chain carbonyl 
240 915 

5COO Terminal carbonyl 20 133 

Nitrogen sp3

 

1NC1 Arg, Asn, Gln side chain 40 165 1.55
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Table S2.1: — continued from previous page

 

1NC2 Terminal amide, Lys 20 100 

sp2, 
aliphati

c 
 

2NCC 
Arg side chain, backbone 

amide 
220 858 

sp2, 
aromati

c 

 

3NCC His side chain 70 36

sp3 4NCC Pro backbone amide 10 24

Oxygen sp3 
 

1OC1 
Backbone and deprotonated 

carbonyl 
280 1181 

1.5 

 

1OC2 
Ser, Thr side chain 

hydroxyl 
20 82

1OC3 Tyr side chain hydroxyl 10 29

Sulfur sp3 
 

1SC reduced Cys 10 0 

1.8 

 

2SCC 
Met side chain, Cys in 

disulfide bonds 
10 18

Hydrogen N/A 1H all hydrogens 1780 6813 0*

*Zero radii are set for the Hydrogen atoms only for SASA calculations. 
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Table S2.2: Optimized (sigma and epsilon) and calculated (cutoff and max SASA) parame-
ters
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Table S2.2: — continued from previous page

 
 Zero radii are set for the Hydrogen atoms, so the cutoff is always the probe of water radius 1.4 Å. 
Sigma = 1.0 for hydrogen and 4NCC are to make sure the denominator is not 0 in Equation 6. 
 Epsilon = 0 enforces zero contribution in shield SASA for all hydrogen and 4NCC involved atom pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.2: Distribution of pairwise atom distances within corresponding cutoffs for each
SASA type atoms for training set peptides and test set proteins
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Table S2.3: Sequences and conformational features in scrambled peptide training set

scrambled 
sequence 

index 
Sequence Secondary 

Structure 
largest cluster (percentage) 

1 
RAH TH GYKMDNP
EQIH LFWCVS-NME 

-
helix, coil 

I am He Huang 

(17.2%) 

2 
RWMCDVAGIH ENL
TPH SKH QYF-NME 

-helix, coil 

I am He Huang 

(13.8%) 

3 
ENLVAFPITWYQH H

RMCKDGSH -NME 
-helix, coil 

I am He Huang 

(45.4%) 

4 
NVWPECH LQYDTI
H FH ASKRGM-NME 

-helix, coil 

I am He Huang 

(38.4%) 

5 
FMIH SEH CLWH Q
ANRKGTVDYP-NME 

antiparallel, turn 

I am He Huang 

(11.7%) 

6 
FKH AH ECQH RGLI
VPSMYNTDW-NME 

-helix, coil 

I am He Huang 

(19.1%) 

7 
YIKQPSDFVWLGTH
NAH EMCRH -NME

-helix, coil 

I am He Huang 

(23.2%) 

8 
LDKH AGH VSREFI
H TWNQCMYP-NME 

-helix, coil

I am He Huang

(23.8%) 
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Table S2.3: — continued from previous page

9 
FH RLQMDKEYNPS
GAWIH TCVH -NME 

antiparallel, turn 

I am He Huang 

(82.3%) 

10 
EDKLH ASRPH WYV
H CFMTQNGI-NME 

-helix, turn, coil 

I am He Huang 

(15.8%)
Note: H , H , H  are Histidine that is protonated at N , N , or both N  and N , respectively. This training set has 
been developed in the experimental state of pairwise SASA algorithm, at that time hydrogens were considered in 
the SASA calculations; but later as we decided to exclude hydrogens in SASA estimation, the protonation states 
do not make any difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2.4: Temperature ladders for all REMD simulations.

System Solvent model REMD temperatures (K) 

HC16 
TIP3P 

266.7, 270.2, 273.8, 277.4, 281.0, 284.7, 288.5, 292.3, 
296.1, 300.0, 303.9, 307.9, 312.0, 316.1, 320.3, 324.5, 
328.8, 333.1, 337.5, 341.9, 346.4, 351.0, 355.6, 360.3, 
365.0, 369.8, 374.7, 379.6, 384.6, 389.7, 394.8, 400.0 

GB/SA (our method, LCPO) 279.5, 300.0, 321.9, 345.5, 370.8, 397.9 
CLN025 GBNeck2, GB/SA (our method, 

LCPO) 
252.3, 275.1, 300.0, 327.2, 356.8, 389.1 

Trp-cage 247.7, 264.0, 281.4, 300.0, 319.8, 340.9, 363.3, 387.3 

HP36 
GBNeck2, GB/SA (our method, 

LCPO) 
250.0, 262.2, 275.0, 288.4, 300.0, 317.3, 332.8, 349.0 

Homeodomain GBNeck2, GB/SA (our method) 
288.7, 300.0, 311.7, 323.9, 336.6, 349.8, 363.5, 377.7, 

392.4, 407.8, 423.8, 440.3
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Table S2.5: The properties of the top 3 cluster representative structures from cluster
analysisα on HC16 GB simulations (300 K) and their occurrences in other simulations (300
K trajectories from GB/SA and TIP3P)

Clustering and occurrence Analysis Cluster 1 Cluster 2 Cluster 3 

Representative structure -RMSD (Å) 1.00 4.12 5.37 

Representative structure ICOSA SASA (Å2) 1686.4 1911.7 1813.9 

Representative structure SASA-based 
( 2) nonpolar energy 

(kcal/mol)  
11.8 13.4 12.7 

Cluster population in GB (%) 57% 15% 5.3% 

Occurrence  in 
each trajectory at 

300K  
 

GB 57.9% 15.0% 4.89% 

GB/SA: our method 91.4% 1.81% 2.95% 

GB/SA: LCPO 93.2% 1.37% 2.27% 

TIP3P 95.7% 0.109% 0.155% 

 For clustering analysis done on GB trajectories, 16000 frames in total are evenly obtained from the last halves of 
the two MD simulations starting from different initial structures, clustering criterion is pairwise RMSDs based on 

-up aggregating average linkage algorithm, centroid distances < 2.0 Å.  

The occurrence of certain cluster in GB/SA ( 2) or TIP3P trajectories was measured by the number 
of conformations that are < 2.0 Å -RMSD) from the representative structure of this cluster, divided by the 
total frame number of the whole simulated trajectory at 300K. 
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Table S2.6: Cluster analysis for HP36 combined trajectory at 250 K and occurrences of the
top 7 cluster representative structures in the four 300 K trajectories, respectively

Clustering and occurrence 
Analysis 

Cluster 1 Cluster 2 Cluster 3 c4 c5 c6 c7

Representative structure 
-RMSD (Å) 

2.401 7.677 3.031 4.696 6.169 5.474 7.209 

Representative structure 
-RMSD on structured 

region 3-32 (Å) 
1.565 6.873 2.569 3.829 5.416 4.545 6.233 

Average -RMSD on 
structured region 3-32 (Å)

1.957 
(0.543)

6.790 
(0.136)

2.712 
(0.310)

3.739 
(0.267)

5.564 
(0.226)

4.570 
(0.148)

6.236 
(0.151)

Average ICOSA SASA 
(Å2) 

3155.7 
(105.8) 

2914.9 
(132.4) 

3195.8 
(113.3) 

3365.7 
(85.4) 

3320.0 
(132.1) 

3376.7
(124.0) 

3230.2 
(110.6)

SASA-based (
Å2) nonpolar energy 

(kcal/mol) 

22.1 
(0.7) 

20.4 
(0.9) 

22.4 
(0.8) 

23.6 
(0.6) 

23.2 
(0.9) 

23.6 
(0.9) 

22.6 
(0.8) 

Fraction 
(cluster 

population) 
in each 

trajectory 
at 250K 

(%) 
 

GB 
30.4 
10.4) 

11.6 
5.82) 

18.3 
0.15) 

5.97 
5.95) 

5.34
5.34) 

0.00
0.00) 

0.00
0.00) 

GB/SA: 
our method 

8.69 
1.25) 

75.9
0.21) 

2.75
0.05) 

0.03
0.03) 

0.00
0.00) 

0.00
0.00) 

0.01 
0.01) 

GB (14sb) 
35.7 
1.73) 

4.31
2.49) 

4.36
0.72) 

4.72
4.72) 

3.38
3.38) 

8.92
7.1) 

1.67
1.07) 

GB/SA: 
our method 

(14sb) 

76.3 
2.51) 

2.12
1.8) 

6.27
0.19) 

0.16
0.16) 

1.20
1.20) 

0.14
0.04) 

2.6
0.06) 

Occurrence
 in each 

trajectory 
at 300K 

(%) 
 

GB 
1.36 

(0.13) 
0.70 

(0.43) 
1.70 

(0.20) 
0.57 

(0.12) 
0.23 

(0.23) 
0.05 

(0.05) 
0.007

(0.007)

GB/SA: 
our method 

18.1 
(0.33) 

26.9 
(1.52) 

14.1 
(0.59) 

0.43 
(0.01) 

0.089 
(0.081) 

0.00
0.00) 

0.038
(0.034)

GB (14sb) 
2.81 

(0.39) 
0.44 

(0.27) 
2.16 

(0.33) 
0.74 

(0.73) 
0.22 

(0.22) 
1.61 

(0.24) 
0.30 

(0.11) 
GB/SA: 

our method 
(14sb) 

47.4 
(0.25) 

1.64 
(1.34) 

30.6 
(0.18) 

0.54 
(0.43) 

1.35 
(1.32) 

0.48 
(0.18) 

3.11 
(0.023)

 Clustering analysis was done on combined trajectory of the four (GB, GB/SA: our method, GB(14sb), GB/SA: 
our method (14sb)) methods. In total 40,000 frames (10,000 frames from each trajectory) are evenly obtained 
from 250K trajectories, clustering criterion is pairwise RMSDs based on structured region (residue 3 to 32 
atoms), using bottom-up aggregating average linkage algorithm, centroid distances < 2.0 Å.  

The occurrences are measured in the similar fashion as in Table S5, i.e. all frames < 2.0 Å (C -RMSD in region 
3-32) from the representative structure of this cluster, divided by the total frame number of the whole simulated 
trajectory at 300K. 
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Figure S2.3: Normalized distribution of ∆SASAicosaatom i including all frame pairs or sorted
frame pairs for training set peptide atoms

50



Figure S2.4: 2D histograms of fitted atomic SASA of each SASA type versus ICOSA numer-
ical values for the test set. Perfect agreement is shown by the diagonal dashed lines. The
color indicates the kernel density estimated using scipy gaussian kde.
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Figure S2.5: Deviation of sum of atomic SASA from the numerical SASA, represented in 2D
histograms of total SASA versus ICOSA numerical values for the test set.

Figure S2.6: Transformation of max SASA to adjusted max SASA by linear regression. Each
data point corresponds to a protein in the test set.
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Figure S2.7: 2D histograms of LCPO fitted molecular SASA of each SASA type versus
ICOSA numerical values for the test set.

Figure S2.8: Unfolding of HP36 NMR structure observed in two GB/SA solvent simulations
using ff14SBonlysc: our method (solid lines) and LCPO (dashed lines). The decrease of
fraction of folded is calculated (< 3.5 Å Cα-RMSD excluding flexible termini) for each
temperature replica throughout the REMD simulations. Only the first 1 µs of data is shown.
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Chapter 3

Toolbox Development for Amino Acid
Specificity Evaluations

3.1 Abstract

To validate the accuracy of computational model and their backbone amino acid speci-
ficity, we developed a novel secondary structure dihedral stability test toolbox and applied
another helical propensity toolbox. In this chapter, we demonstrated the evaluation and
comparison of two force fields on their capabilities in reproducing crystal structure dihedral
angles and helical propensity measured from chemical shift, respectively. The findings cross
validate our understanding in protein backbone parameter modifications and point out the
necessities of improving amino acid specificity in the current model. The toolboxes and the
same methodology could be applied to future studies.

3.2 Introduction

The question of whether current computational models are able to capture the amino acid
specificity has been brought up and the significance has been addressed in Introduction 1.3.2.
But for model validation and accuracy issue diagnosis, first and foremost, we need a set of
toolboxes in which we could compare specific simulation results to benchmark measurements.

To develop and validate the protein modeling force fields and solvent models, quantities
calculated from simulations are often trained to reproduce QM data or compared against
experimental data collected at consistent conditions. In the earlier Amber force fields in-
cluding ff94, ff96, ff99 and ff99SB, backbone parameters were fit against QM ab initio energy
minima of amino acid fragments or short peptides, where QM energies were from gas-phase
calculations. More recently, empirical comparison and fitting against experimental data have
been applied to modify force field parameters, such as RSFF1, RSFF2, ff99SB*, ff99SBnmr,
ff14SB, etc.

Crystallographic data provides a large, meanwhile growing, amount of structure infor-
mation for proteins and their complexes. To validate protein modeling tools, model systems
such as ubiquitin[20], toxin II protein crystal lattice[17] and others[21] have been tested in
short simulations and used to evaluate the accuracy of corresponding force fields or solvent
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models. But the evaluation conclusions, drawn from one or two proteins, might still lack
transferability to other protein contexts. In contrast to the other extreme, large-scaled sta-
tistical approaches made the assumption that each amino acid would follow the standard
energy profiles averaged from all of its kind over a large amount of structure distributions.
For example, the top500 high-resolution crystal structure database, created and curated by
the Richardson lab[117], had been used to derive statistical potential for force field poten-
tial energy evaluations[20]. Also protein coil libraries, originally initiated by Swindells et
al.[118], have motivated the studies in intrinsic conformational propensities of amino acids
and have been used for force field development[75, 68]. However, the evaluations compared
against the PDB distribution[20] or coil library[75, 119] suffer from the lack of solid thermo-
dynamic foundation or the limitations (inconsistent temperatures, crystal packing etc.) in
data quality.

Therefore, it is worth trying to evaluate the reproducibility within contexts compar-
ing against high quality crystallographic data: (1) to capture the experimental behavior of
proteins in one context in simulations and test how well the force field/solvent model combi-
nation is in reproducing this one context; (2) to scale up to 30 proteins (i.e. 30 sequences of
contexts) and collect the statistics for each amino acid. The secondary structure preferences
of backbone dihedrals adopted in crystal structures are used as the criterion for deciding
whether the experimental behavior is reproduced, although proteins are dynamic and crys-
tal structures may only provide an averaged picture. We scale up the statistical analysis
to tens of proteins after each of them has been compared with the corresponding crystal
structure. This is different from directly compare against the PDB data base distributions,
as each sequence is studied within its own context.

55 High Quality proteins (HiQ54+) data set was designed and used as benchmarks to
improve Rosetta energy functions [120]. It consists of 55 non-redundant, single-chain and
monomeric proteins from PDB through 2010. Without any significant errors such as bond-
length/angle outliers, these crystal structures all have resolution smaller than 1.4 Å. Culling
out the systems with ion or small molecule binders referring to several criterion described in
Method, the selected 27 proteins are termed Hi27 data set. By working with the high quality
crystal structures, the factors that are usually ascribed to protein instability in simulations,
such as possible dimer interface, other necessary binders or crystal packing effect, could be
excluded. The secondary structure balances achieved in our short simulations thus should
be used to validate force field and solvent model accuracy. In addition, the effects of solvent
model and backbone parameters are separated by altering just one thing at a time; we
compare the secondary structure propensity change where just solvent model or force field
backbone parameter set is changed. As to change solvent from explicit to implicit is too big
of an alternation, in our analysis, explicit solvent results could work as the control.

Spectroscopic methods also provide a major resource of quantities that could be measured
from aqueous state experiments and calculated from simulations. Scalar coupling is used in
protein force field developments and testing[121, 23]; the NMR spin-spin coupling constants
are related to protein backbone angle distributions by the Karplus equation[122]. 13Cα
chemical shifts from NMR measurements have also been employed to indicate the helicity of
peptides[123, 124] and the secondary structure balance in different force fields[125, 71]. Back-
bone Amide NH Lipari-Szabo S2 order parameters derived from NMR relaxation experiments
are also useful quantities reflecting the backbone motions and dynamics[126, 20, 18, 24, 23].
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Other approaches such as IR and Raman spectra data was used to determine the relative
populations of the three major backbone conformations[127] and potentially could be referred
to for force field validations.

For helical structure balance and amino acid specificity tests, we followed what was done
by Best et al.[125] and then Perez et al.[71]. We compared the helical propensities calculated
from simulations to a set of experimental measures derived from 13Cα chemical shifts[124].
This set of experimental data provide helical propensity for all 20 amino acids. Although
only helical propensities are calculated and compared to directly, it is an important data set
in reflecting the intrinsic balance preferences and amino acid specificity of our computational
models.

3.3 Methods

3.3.1 System setup

HiQ27 data set selection from HiQ54

27 out of the total 54 monomeric proteins were picked out as eligible systems for com-
putational model evaluation. In the complete HiQ54 dataset, although all 54 proteins are
of high quality (< 1.4 Å) and no multimer interfaces, several other criteria were checked
before including certain protein into our toolbox: (1) no ions or small molecule binders, (2)
no missing residues, (3) no non-standard amino acids, (4) no obvious crystal packing effect
by visually examining the neighboring asymmetric units reconstructed using PyMOL[128].
After culling off the systems that conflict either criterion stated above, 27 proteins were
selected into our toolbox, termed HiQ27. All the initial structures were then optimized by
Reduce[129] (Asn/Gln/His flips corrected) and His protonation state predicted by H++[130].
Table 3.1 summarizes the names, PDB codes and secondary structure features of all 27 pro-
teins (sorted by numbers of amino acids).

Table 3.1: Protein crystal structures selected into HiQ27 data set

Protein Name #PDB ID Ref AA Secondary Structure

protein G domain 2igd [131] 61
alpha/beta (NuG2 Variant
1MI0 was simulated by us,
pH=8, T=298K)

scytovirin lectin 2qsk [132] 95 mostly coil
PDZ dom of NumB-bdg prot2 2vwr [133] 95 alpha/beta
RNase Sa T76W 1t2i [134] 96 alpha/beta
starch-bdg dom, glucoamylase 2vq4 [135] 106 mostly beta
A aceti thioredoxin 2i4a [136] 107 alpha/beta
FK506-bdg prot 12 2ppp [137] 107 alpha/beta
cardiac myosin-bdg 3cx2 [138] 107 antip.beta
Phox hom dom, P-inos-3-K C2-g 2wwe [139] 111 alpha/beta tail

Continued on next page
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Table 3.1 – continued from previous page
Protein Name #PDB ID Ref AA Secondary Structure

shark single-dom antibody 2i24 [140] 113 antip.beta

sulfite red’ase DsrC 1sau [141] 114
mostly alpha, one beta
hairpin

FK506-bdg dom of FKBP38 3ey6 [142] 118 antip.beta
pak pilin, trunc 1x6x [143] 120 alpha/beta
barley bowman-birk inhibitor 2fj8 [144] 120 mostly coil, some beta

P-lipase A2 homolog 1mc2 [145] 122
mostly alpha, one beta
hairpin

RNase A 1kf5 [146] 124
alpha/beta mix
(multiple pH structures
are available)

bovine H protein 3klr [147] 125 alpha/beta
bromodoamin 1 in BRD4 2oss [148] 127 alpha
human lysozyme, synthetic 2nwd [149] 130 mostly alpha, one hairpin
fish antifreeze 2zib [150] 130 alpha/long beta
coactosin-like prot 1t3y [151] 131 alpha/beta
microtubule end-bdg 3co1 [152] 132 alpha
adipocyte fatty-acid bdg prot 3q6l [153] 132 beta barrel
M tuberc hyp prot Rv1873 2jek [154] 140 alpha
tryparedoxin-I mut 1o8x [155] 144 alpha/beta mix
Cel45A endoclucanase 1wc2 [156] 180 beta barrel with alpha tails
cyclophilin B PPI dom 3ich [157] 188 beta/alpha

(AAXAA)3 for all 20 amino acids

As described in Perez et al.[71], in the (AAXAA)3 sequence, X represents each of the
20 amino acids. The calculated helical propensity of each amino acid was compared to
the experimental wi assigned from 13C=O chemical shifts[124]. Different from what was
measured in the experimental measurements, three substitutes of the same amino acid were
repeated to increase the statistical significance of computed results[71].

3.3.2 Simulation details

HiQ27

The initial structures were built in Amber LEaP from corresponding crystal structures
listed in Table 3.1 with more details in Table S3.1. For each system, two force fields:
ff14SBonlysc, ff14SB and two solvent models: GBNeck2 and TIP3P were used for pa-
rameterizations. Three different combinations were employed: ff14SBonlysc+GBNeck2,
ff14SB+GBNeck2, and ff14SB+TIP3P. For each system, disulfide bonds, termini and pro-
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tonation states for Histidine residues were checked using H++ to be consistent with crystal
pH values, the details are included in Table S3.1.

Equilibrations were carefully done following the lab wiki tutorial protocols; the details
are include in Supporting Information on page 72. For the short MD production runs, 290K
was used for all systems to reduce kinetic fluctuations and extend data collection prior to
structural changes. For each force field and solvent model combination, two runs starting
from the same equilibrated crystal structure were simulated, with different initial velocities
(ig = -1). Langevin dynamics with a 1 ps−1 coupling constant and 2 fs time step were used.
SHAKE algorithm for restraining all the hydrogen involved bonds were on at all times. All
the production runs were of various lengths but over 50 ns. So we analyzed the first 50 ns
of production runs for dihedral stability and inter-conversion ratios.

(AAXAA)3

The initial structures were built in Amber LEaP from sequences. For every set of
(AAXAA)3 peptides consist of 20 amino acids, two force fields were used: ff14SB and
ff14SBonlysc. For all the peptides, the termini residues were kept free, i.e. no cap residues
were added to neutralize the charges. An additional set of simulations using ff14SBonlysc
was done to compare capped termini with free ones. GBNeck2 implicit solvent was used
in all simulations. Equilibrations were done for 1 ns (250 ps × 4 steps) of simulations on
Bell cluster (Simmerling Lab Computer Cluster). SHAKE algorithm for restraining all the
hydrogen involved bonds were on at all times. T-REMD simulations1 with 6 replicas at the
exchange rate of every 1 ps were run for 1.75 µs on Bluewaters Super Computer. Langevin
dynamics with a 1 ps−1 coupling constant was used. 4 fs time step and hydrogen mass
re-partition[40] was used.

3.3.3 Dihedral stability and inter-conversion ratio calculations

The secondary structure preferences are inferred from backbone dihedral torsion angles.
In this work, the definitions of secondary structure basins have been illustrated in Figure
1.2C. We defined five different secondary structure elements (SSEs), namely, beta, ppII,
right-handed helix, left-handed helix and none of the above (outsider). A matrix scheme,
termed matrix of SSE, matrixSSE, was designed to keep track of the SSEs for each amino
acid in a certain protein and collectively for the whole HiQ27 data set. Each row and column
represent one SSE in matrixSSE. For example, if we look into the crystal structure of protein
RNase A (PDB code: 1KF5[146], there are 12 Alanine residues, among them, 1 Alanine falls
into outsider basin, 4 Alanine adopt beta, 2 in PPII, 5 in right-handed helix and 0 in left-
handed helix. To represent the matrixnativeSSE of Alanine in crystal structure of 1KF5, a matrix
below:

1Temperature ladders are 300.0, 325.0, 350.0, 375.0, 400.0, 425.0 K.
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matrixnativeSSE =


outsider beta ppII alpha left-alpha

o 1 0 0 0 0
b 0 4 0 0 0
p 0 0 2 0 0
a 0 0 0 5 0
l 0 0 0 0 0

 (3.1)

records the number of dihedrals staying in the same SSE or converting into other SSEs. The
columns indicate the SSE in crystal structure (in the order of: outsider, beta, PPII, right-
handed alpha and left-handed alpha) and the rows indicate the SSE observed in another
conformation after simulations (in the same order, with only the first letters for simplifica-
tion).

When the conformation of crystal structure is considered in Matrix (3.1), only the di-
agonal values are non-zero; diagonal value for left-handed basin is zero because there is no
Alanine dihedral adopts left-handed conformation in the crystal structure. When other con-
formations are considered, Alanine dihedrals that start as certain SSE will end up in the
same or other SSEs. For instance, in a new conformation, for all 12 Alanine residues, the 4
originally started in beta as seen in Matrix (3.1), now have 2 beta dihedrals left, shown in
red in Matrix (3.2) below. The 2 dihedrals that convert out of beta: one is found in ppII and
the other in alpha. Similarly, the values for other SSEs change accordingly. So we update
this matrixnewconfSSE to be:

matrixnewconfSSE =


outsider beta ppII alpha left-alpha

o 1 0 1 1 0
b 0 2 0 0 0
p 0 1 1 2 0
a 0 1 0 2 0
l 0 0 0 1 0

 (3.2)

which records the SSE results for this new conformation. To be noted that the numbers in
each column add up to be the same as the diagonal numbers in Matrix (3.1).

To count for all the frames from short MD simulations, two runs of first 50 ns of produc-
tion run were analyzed by taking 500 frames of conformational snapshots. Similarly, when
all of the conformations in a whole trajectory are examined, the numbers in each column

of matrix
Nconf

SSE will also add up to be the Alanine residues found in crystal structure mul-
tiplying by the number of frames. For example, for the native structure of 1KF5, Alanine
matrixSSE is given as Matrix (3.1), the values in each column will add up to be 500(outsider:
o), 2000 (beta: b), 1000(ppII: p), 2500(alpha: a) and 0 (left-handed alpha: l) for each SSE,
respectively. The stability ratio of certain SSE is then calculated via dividing the number
on the diagonal by the sum value. The inter-conversion ratio of some certain SSE turning

into other SSEs is also calculated using the same fashion. For example, if a matrix
Nconf

SSE has
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the values as below:

matrix
Nconf

SSE =



outsider beta ppII alpha left-alpha

o 225 147 143 453 0

b 64 1770 59 310 0

p 211 11 699 419 0

a 0 18 198 1318 0

l 0 0 0 0 0


(3.3)

The stability ratios shown on the diagonal in red and the inter-conversion ratios in blue are
calculated accordingly as below:

matrixratioSSE =



outsider beta ppII alpha left-alpha

o
225

500

147

2000

143

1000

453

2500
0

b
64

500

1770

2000

59

1000

310

2500
0

p
211

500

11

2000

699

1000

419

2500
0

a 0
18

2000

198

1000

1318

2500
0

l 0 0 0 0 0



(3.4)

Which is equivalent to:

matrixratioSSE =


outsider beta ppII alpha left-alpha

o 0.45 0.0735 0.143 0.1812 0
b 0.128 0.885 0.059 0.124 0
p 0.422 0.0055 0.699 0.1676 0
a 0 0.036 0.099 0.5272 0
l 0 0 0 0 0

 (3.5)

Note that there are two alpha basin definitions used as illustrated in Figure 1.2C, the
more stringent definition with narrower range gives Matrix 3.5, while a different matrix
is calculated as below, consistent with the definitions in the previous studies of Wickstrom,
Maier and Simmerling et al. [19, 23]:

matrixratioSSE =


outsider beta ppII alpha left-alpha

o 0.45 0.0256 0.085 0.0356 0
b 0.128 0.885 0.059 0.124 0
p 0.422 0.0055 0.699 0.1676 0
a 0 0.086 0.157 0.6728 0
l 0 0 0 0 0

 (3.6)
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In the same fashion, for each protein in the HiQ27 data set, a set of matrices for each
20 amino acid was calculated. The stability ratios for outside, beta, ppII and alpha basins
were extracted for each amino acid and each protein system. The box-and-whisker plot was
used to deal with the statistical fluctuations among the 27 protein systems. The boxes show
the inter-quartiles of ratio ranges. The horizontal lines represent the median of ratio data.
The whiskers extending to the most extreme, non-outlier data points, have caps at two ends.
The outlier data points are illustrated as well.

3.3.4 Helical propensity calculations

Lifson-Roig Model[158, 159] was used for experimental[124] and computations[71, 125].
In this work, we followed the same model in which protein torsion angles were decided to
be either in helix or random coil, with either 1 or 0 designated in represented matrices,
respectively. The secondary structure basin defining a helix-forming region (φ, ψ) in (−100◦

to −30◦, −67◦ to 7◦) has been illustrated by the smaller rectangle for alpha basin in Figure
1.2C. Whether a residue is at the start/end of helix or within helix is further differentiated in
the model. There are three states in coil-helix transition, namely, coil, start/end of helix and
within a helix. Their relative weights are 1, vi and wi, respectively. vi could be understood
as the equilibrium constant for a residue in a coil conformation to nucleate into a helix,
and wi is the equilibrium constant to extend an existing helical segment. The calculations
to estimate vi and wi for the substitute residue X of interest in each peptide were done
in a genetic algorithm optimizer written in Python and provided by Alberto Perez. The
calculation processe is as follows, (1) to analyze the φ and ψ for all residues in the simulated
structural ensembles, (2) to extract the numbers of residues in three states, (3) to maximize
a log-likelihood function:

L =
∑
i

Nw,iln(wi) +
∑
i

Nv,iln(vi)−Nconf ln(Z) (3.7)

where Z =
(

0 0 1
)
×

N∏
i=1

Mi ×

 0
0
1

 (3.8)

Mi =

 wi vi 0
0 0 1
vi vi 1

 (3.9)

with the populations of helical starts/ends represented as Nv,i and in helix segments as Nw,i,
total numbers of conformation represented as Nconf . vi and wi for each amino acid are the
variables subject to be optimized.
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3.4 Results and Discussions

3.4.1 Diverse amino acid specific dihedral stabilities in different
models

HiQ27 Crystal structures go through larger conformational changes in implicit
solvent

The short MD simulations for all 27 HiQ crystal structures in three force fields/solvent
combinations have been carried out on GPU implementation of Amber 15. To increase the
statistical significance of data collected, two runs of simulations were used and compared.
Before the in-detailed SSE stability/conversion tests, the overall Cα-RMSD measurements
against the crystal structures, respectively, are plotted in Figure 3.1 for ff14SB+TIP3P,
Figure 3.2 for ff14SBonlysc+GBNeck2 and Figure 3.3 for ff14SB+GBNeck2. Within the
first 100 ns of MD simulations, all of systems show < 3 Å RMSD fluctuation with respect
to the crystal structures in explicit solvent results. However, in implicit solvent simulations,
several proteins (2FJ8, 2QSK, 2OSS, 3CO1) go through large conformational changes.

Figure 3.1: Two runs of short MD simulations for HiQ27 proteins using ff14SB and TIP3P
at 290K
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Figure 3.2: Two runs of short MD simulations for HiQ27 proteins using ff14SBonlysc and
GBNeck2 at 290K

Interestingly, the main components in crystal structures of 2FJ8 and 2QSK are coils. The
coil-enriched crystal structures of 2FJ8 has crystallized waters possibly providing stabiliza-
tion contributions, although crystallized waters are also prevalent for other systems. As we
are only simulating the protein molecule and there are no explicit water molecules included
in implicit solvent simulations, it is within expectation that large conformational changes
and unfolding of initial structures are observed. In contrast, explicit solvent simulations
with crystallized waters show very stable Cα-RMSD for 2FJ8 as seen in Figure 3.1. The
system of 2QSK is even more challenging, this antiviral lectin scytovirin (SVN) protein has
previously been reported in NMR and Mass-spectrum studies in which a structure of around
5 Å away from this crystal structure (PDB code 2jmv[160]) and a different disulfide bonding
pattern was solved. So whether this crystal structure is a reasonable comparison is in doubt
as the solution structure of this protein may well be a different structure. But as the goal
here is to collect data from numerous protein systems for computational model accuracy, it
is reasonable to not include 2QSK into SSE stability calculations instead of diving deeper
into which structure should be compare to.

The other two crystal structures of 2OSS and 3CO1 are mainly composed of helices.
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Figure 3.3: Two runs of short MD simulations for HiQ27 proteins using ff14SB and GBNeck2
at 290K

Although it is not salient here when ff14SBonlysc results are compared with ff14SB, we have
seen ff14SB in stabilizing helical structures in HP36 and Homeodomain more effectively than
ff14SBonlysc in Chapter 2. In these two proteins, these two force fields along with implicit
solvent GBNeck2, do not show distinguishable stability differences, which indicate that it is
not backbone parameter difference that causes the helical structures in crystals to unfold,
but they also point to the crystal assembly or crystallized water related situations. Even
though they add to larger fluctuations to the SSE changes, we still include them into the
SSE stability and inter-conversion analysis as they are only two data points and would not
statistically alter overall conclusion drawn on the larger scale of data set.

Four secondary structure element basin dihedrals have different stability ratios

Because proteins are dynamic molecules in solvent, the backbone dihedral torsion angles
do not stay rigidly at one angle or in certain structural basin at all times, instead dihedrals as
the only degrees of freedom in protein backbones, are dynamically changed as characterized
in Figure 3.4 throughout the simulations, even though very small overall fluctuation is
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measured in all Cα-RMSD as seen from Figure 3.1 to Figure 3.3.
Different dihedrals originated in four secondary structures are found to possess diverse

stabilities in general. For the alpha basin, if the definition follows the bigger rectangle as
shown in Figure 1.2C, the stability ratios for all amino acids considered are very close
to 100%. However, for beta region, most stability ratios are only larger than 80% for the
simulation results of TIP3P solvent. When it comes to the ppII basin, around 80-90% of
stability ratios are achieved in TIP3P solvent simulations, but it is very sensitive to the
alternation of computational models and amino acid types. For outsider region, most of the
TIP3P solvent results are below 60% and the ratios are also sensitive to different models and
amino acid types. This observation is counter-intuitive in the beginning, but it is reasonable
when the SSE definitions and the energetic point of view is taken; the larger area of SSE
definition likely lead to larger probability of stability and inward-conversion rate, meanwhile
the high energy barrier between ppII and left-handed alpha region likely expel the dihedrals
to fluctuate towards the lower energetic regions for example the inter-conversion of beta,
outsider and ppII basins.

SSE stability ratios possess amino acid specific features

Different amino acids have specific side chains and physicochemical properties, thus it is
expected that regardless of the computational model used for simulations, different amino
acids serve the structural roles distinctively as observed in HiQ27 data set. For example,
as seen in Figure 3.4B, among the 19 amino acids, Methionine keeps the highest o2o and
lowest p2p ratio, meaning the dihedral angles that start in coil basin are likely not to turn
into secondary structures in the 50 ns of simulations, while the dihedrals in ppII region, even
for explicit solvent, stay in the original places less than 60% of the time. But alpha and
beta basins do not show specific feature for Methionine compared to other amino acids in
general. Instead, Trptophan seems to achieve the highest ppII stability. But for Proline,
its alpha basin stability is distinct from the rest amino acids, as it is a cyclic residue and
restrained on the backbone thus it never samples beta nor outsider regions. Even though
all the other amino acids have relatively high alpha stability, for Serine and Tyrosine, much
more alpha dihedrals migrate out of the alpha basins in the short 50 ns simulations in all
three force field/solvent combinations. All the specificities observed from the SSE stability
ratio box plot are possibly due to specific dihedral spatial constraints determined by the side
chains of different amino acids. Even though it is the backbone parameter that is assumed
to dictate the secondary structure propensities in proteins, the coupling of side chain and
backbone is not so easily separated. Another idea that has been explored by previous groups
is amino acid specific force fields [161, 72, 68]. We also think it is a reasonable alternative
to the current backbone parameter which is only trained based on Alanine and applied to
the rest amino acids (except Proline and Glyine). More investigations into whether current
models could reproduce the amino acid specific helical propensities have been shown in the
Section 3.4.2.
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ff14SB backbone modifications increase alpha and ppII stabilities

To split up the effects of force field and solvent model, we show the same analysis carried
out for three different computational models, varying one thing at a time. The three model
combinations studied are 1:ff14SBonlysc + GBNeck2, 2:ff14SB + GBNeck2 and 3:ff14SB +
TIP3P. The model 1 and 2 only differ in the backbone parameters and model 2 and 3 only
differ in the solvent models. It is expected that same length of simulations in explicit and
implicit solvent do not result in comparable kinetics, so it is difficult to compare the model
2 and 3 quantitatively, but only a trend of more stable simulations in explicit solvent is
concluded. Comparing stability ratios of model 1 and 2, the observed stability shift from
beta to ppII and alpha regions is indeed consistent with the energy profile of φ dihedrals
as shown in Figure 3.5 below. When a modified energy function is applied in ff14SB, the
−90◦ to −30◦ degrees of φ dihedrals, which correspond to the alpha and ppII region as seen
in Figure 1.2C and 3.4A, possess lower energy thus more stability in MD simulations. In
Figure 3.4B, comparing model 1 and 2, when ff14SB is used in model 2, across all amino
acids, the ppII stability is enhanced, for amino acids such as Phenylalanine and Cysteine,
the ppII stability of model 2 is comparable with using explicit solvent of model 3. For the
more stringent alpha region definition, the alpha stability ratios for model 2 compared to
model 1 have increased in all cases except for Proline; because the backbone modification
is not applied to Proline. With the positive comparison (all other amino acids) and control
(Proline), it is safe to conclude that the changes observed in stability ratio from model 1 and
2 are consistent with the designed modifications.

Figure 3.5: Backbone dihedral energy function for ff14SBonlysc (light blue) and ff14SB (dark
blue). This figure is adapted from Figure 13 in Carmenza Martinez’s PhD dissertation.

The findings from the SSE stability test are addressed from the aspects described above,
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but those are not all the conclusions we could draw, the inter-conversions of different SSE
basins should also complement the stories. However, since it is a data set of high dimensions
(20 amino acids × 500 frames of snapshots × 2 runs for 3 models), we have not established
very helpful ways of representing and visualizing the inter-conversion data. Therefore, all
the analysis and matrices described in Method of this chapter have been archived in hard
drives. If anyone who became interested in the future, further studies and analysis could be
followed upon from the current data set and results.

3.4.2 Helical propensities indicate the necessity of amino acid spe-
cific backbone parameters

For the second part of this chapter, we present the application of another toolbox, in
which amino acid specific helical propensities are estimated by the helix extension wi prop-
erties for all 20 amino acids. The experimental helical propensities are derived from 13C=O
chemical shifts [124]. The simulated helical propensities are calculated based on the Lifson-
Roig model[158, 159] extracted from the (AAXAA)3 simulations, using ff12SB + GBNeck2,
ff14SB + GBNeck2 and ff14SBonlysc + GBNeck2. The computed vs experimental helical
propensities for these three model combinations are shown in Figure 3.6.

Figure 3.6: A. Computational vs. experimental helical propensities for ff12SB with GBNeck2,
which is obtained from Perez[71]; B. ff14SB with GBNeck2; C. ff14SBonlysc with GBNeck2.
Dotted lines indicate kBT*ln(2) error in free energy with respect to experiment. The solid
line indicates perfect agreement computation and experiment

In experimental assignments, Alanine is the most helical-prone amino acid followed by
Leucine. However, in all simulated models, Alanine helical propensity is largely underesti-
mated. In the model of ff12SB+GBNeck2 (Figure 3.6A), Alanine is not helical enough,
falling even below half of other amino acids; Proline and Glycine agree with experimental
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values, while all the rest amino acids bias towards overestimated helical propensities. In the
model of ff14SB+GBNeck2 (Figure 3.6B), Alanine is again not helical enough, but it is not
as low relatively to other amino acids; Proline, Glycine, Arginine and Methionine agree well
with experimental values; all others except Histidine and Threonine are slightly overesti-
mating the helical propensities; while Histidine and Threonine bias the helical propensity by
more than doubling the experimental values. As for the model of ff14SBonlysc+GBNeck2
(Figure 3.6C), except Histidine is overestimated and Alanine is underestimated, all the
other amino acids fall into the kBT*ln(2) error range. Compared ff14SB with ff12SB, all
helical propensities shift to smaller values by about the same value, which end up with rela-
tively the same order. These findings suggest that amino acid specific backbone parameters
are needed to fine-tune the relative helical propensities, as the backbone parameter for all
(except Glycine and Proline) will shift all amino acids together without fixing the relative
wrong orders.

The inconsistency between simulated and experimental systems, which should not be
neglected, hinders the reliability of quantitatively comparing the simulation results with
experimental values. According to this experiment, a series of peptides were synthesized and
analyzed in D2O (pD was controlled to be 7.0) at 25◦C. The peptides shared the following
sequence:

TrpLysm
tLeu3 − Ala9XxxAla9 − tLeu3LysmNH2

in which tLeu ≡ tert-Leucine, m = 6 or 8, Xxx ≡ one of 20 amino acids. This sequence was
used because it is experimentally tractable and retains detectable helicity over the aqueous
temperature range 2-60◦C. The polylysine caps were used to increase the solubility by pre-
venting aggregation. But the simulated systems do not contain the charged termini and also
with 3 Xxx substitute to increase the statistical significance.

However, this test case provides well-rounded helical propensity data for all 20 amino
acids and a reliable relative comparison of simulations and experiments. Although only
helical propensities are investigated in this case, it is still part of the useful toolbox for
computational model evaluation and issue diagnosis. Therefore, it has been adapted for
force field development test, which would provide more helpful insight into the future force
field modifications.

3.4.3 Cross-validation of stability test and helical propensity test

In SSE alpha dihedral stability test, it is found that Serine, in both ff14SBonlysc and
ff14SB in GBNeck2, performs the worst among all 19 amino acids in stabilizing in the original
Ramachandran basin of the same definition. Alanine actually does better than Aspartic acid,
Tyrosine, Lysine and Arginine when the medians are compared, and has completely higher
stability ratio than Serine as seen in alpha region stability ratios (a2a row of Figure 3.4B).
Although in helical propensity test, Alanine becomes the most problematic amino acid, which
is underestimated the most in both force fields in Figure 3.6, Aspartic acid, Tyrosine, Lysine
and Arginine are also of relatively lower helical propensities, which is consistent with SSE
stability test.

As the alpha region instability of Alanine is only observed in the helical propensity
test but not in the dihedral stability test, three possible explanations are discussed and
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could possibly provide more insight into the future toolbox design. (1) Alanine instability
in α-helical propensity is a sequence dependent problem, meaning in the special case of
(AAXAA)3, low alpha propensity of Alanine is exemplified but it may not be carried over
in other systems, such as in the data set of HiQ27. In this sense, more investigations are
needed to validate the conclusions made from this chapter. (2) The two toolboxes actually
have tested different properties of secondary structure stabilities. In the dihedral stability
test, it is the breakdown of secondary structures that is monitored, while extension parameter
wi in helical propensity test is measuring the α-helical dihedral formation once the previous
dihedral is already in alpha. It is possible that with current backbone parameters, the ability
for Alanine to stay in the pre-formed alpha region is not problematic compared to the rest
amino acids, but the ability to convert back from other basins is the center of the issue. In
the energetic perspective, the depth of the alpha basin right now is deep enough so that
once alpha dihedrals fall into it, it is not exceptionally easy to get out. But the depth of
other basins are relatively deeper than they should be thus it is difficult to sample back
into the alpha basin. For other amino acids, the relative depths among all the secondary
structure basins are more balanced. (3) In terms of the stability test, a modified approach
to collect the statistics of dihedral basin conversion might be more reasonable. Instead of
always referring back to the starting dihedral basin in the crystal structures, it makes more
sense to reset the initial basins to the previous frame(s), which might be the real conversion
ratio we are going after.

3.5 Conclusions

In this chapter, two benchmark data sets (SSE dihedral stability and helical propensity
toolboxes) are employed and their usages of evaluating the accuracy of computational models
are demonstrated. With respect to experimental quantities, the amino acid backbone speci-
ficities simulated from two Amber force fields in implicit solvent are compared and further
analyzed.

In the developed dihedral stability toolbox, 27 high quality proteins previously used for
Rosetta energy function training have been carefully set up, equilibrated and simulated for
50 ns. Fluctuations of structures are compared across two different force fields. Explicit
and implicit solvents are also kept as single variable for comparison. As expected, larger
conformational changes were observed in implicit solvent simulations. When all the dihedral
angles are compared with their original dihedral secondary structure basin in crystal struc-
tures, different secondary structure dihedrals show diverse stability: alpha basin dihedrals
in average possess higher stability than beta and ppII regions, outsider basin has the lowest
stability. The comparison across 19 amino acids (except Gly) manifests specificity in each
of the secondary structure stabilities, even without amino acid specific parameters. The
different set of ff14SB backbone parameters compared to ff14SBonlysc has also shown more
stability in alpha and ppII basin, which is consistent with the modified energy profile.

We also applied helical propensity toolbox to study if current computational models
(ff14SB with GBNeck2 and ff14SBonlysc with GBNeck2) could reproduce experimental trend
of helix extension propensity for all 20 amino acids. Compared with ff12SB that largely over-
estimates the helical propensity of all amino acids except Alanine is slightly underestimated,
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ff14SB reproduces the experimental trend better overall and ff14SBonlysc performs the best.
However, as the same backbone parameters were used (except Glycine and Proline), the
improvement observed in other amino acids results in worsening the Alanine and underesti-
mating its helical propensity by even more. Therefore, we concluded that amino acid specific
backbone parameter might be the key to resolve this issue.

Lastly, the conclusions drawn from the two toolbox tests separately are cross-compared
and discussed. Two tests agree on the low alpha stability residues Serine, Aspartic acid, Ty-
rosine, Lysine and Arginine. The discrepancy displayed in Alanine residue could be ascribed
to three causes and provide further investigation directions.

3.6 Supporting Information

Table S3.1: Protonation states and other structural features for proteins in HiQ27 data set

#PDB ID Crystal pH Structural features

1kf5 7.1

3 HIE: 12,105,119
1 HIP: 48
SS-bonds: 26-84, 40-95,
58-110, 65-72

1mc2 5.8

1 HIE: 110
1 HIP: 47
solvent: IPA
7 SS-bonds

1o8x 8.2 2 HIE

1sau 9.5
2 HIE
1 SS bond

1t2i 7.2
1 HIE: 85
1 HIP: 53
1 SS-bond

1t3y 8 1 HIE

1wc2 5.5
9 HIP
6 SS bonds
solvent: ACT, PEG

1x6x 8.2 1 SS-bond
2fj8 5.64 10 SS-bonds

2i24 7.4
2 SS-bonds
solvent ion: Cl

2i4a 4.6

1 HIP
1 SS-bond
solvent: BME (hbonding
with Lys51 sidechain)

2igd 4.8 alternate rotamers

Continued on next page
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Table S3.1 – continued from previous page
#PDB ID Crystal pH Structural features

2jek 6.5
1 HIP: 74
2 HIE 31, 66
solvent: SO4, GOL

2nwd 4.9
1 HIP
4 SS-bonds

2oss 7.5
1 HIE
solvent: EDO

2ppp 7 3 HIE

2qsk 8
1 HIP (!)
5 SS-bonds
solvent: Cl, GOL

2vq4 - just alternate rotamers
2vwr 4.2 2 HIP

2wwe 5.5
6 HIP
1 HIE: 70

2zib 5.4
7 HIP
5 SS-bonds
solvent: SO4

3co1 7.4 5 HIE

3cx2 6.9
4 HIE: 55,74
2 HIP: 59,106

3ey6 7.5 2 HIE

3ich 6
1 HEP: 96
2 HIE

3klr 3
1 HIP
solvent: SO4, GOL

3q6l 7.4 1 HIS

Explicit solvent equilibration protocol

If TIP3P was the solvent, periodic boundary condition was always on. The equilibrium
steps followed the lab wiki tutorial for TIP3P equilibration 9 steps:
(1) 10,000 steps of energy minimization for water and hydrogen atoms restrained on crystal-

lized water oxygen atoms and heavy atoms of protein with 100 kcal/(mol·Å2
) force constant.

E.g. 1KF5 has 227 crystallized water molecules, so the restraint mask for this system is
’:130-356@O, !:WAT & !@H=’;
(2) in 100 ps (1 fs time step) of MD simulation time, to heat the system to targeted tem-

perature (290 K in HiQ27 simulations), with 100 kcal/(mol·Å2
) force constant restrained on

the same atoms as in step 1;
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(3) 100 ps (1 fs time step) of constant pressure constant temperature with the same re-
strained as in step 2;
(4) 250 ps (1 fs time step) of constant pressure constant temperature with weaker (10

kcal/(mol·Å2
) force constant) restraints;

(5) 10,000 steps of energy minimization with 10 kcal/(mol·Å2
) force constant restraints on

backbone and crystallized water oxygen ’ @CA,N,C | :130-356@O ’;
(6) 100 ps (1 fs time step) constant pressure, constant temperature MD simulations with
restrained backbone with the same weak restraints as in step 5;
(7) 100 ps (1 fs time step) of constant pressure, constant temperature MD simulations with

1 kcal/(mol·Å2
) force constant restraints on backbone atoms;

(8) 100 ps (1 fs time step) of constant pressure, constant temperature MD simulations with

0.1 kcal/(mol·Å2
) force constant restraints on backbone atoms;

(9) 500 ps (2 fs time step) unrestrained MD simulations to finish the equilibriation.

Implicit solvent equilibration protocol

If GBNeck2 was the solvent, there was no periodic boundary conditions but equilibrium
was done in similar fashion, except there are no crystallized water or neutralizing Na+/Cl-
ions. The 7 steps of equilibration are as follows:

(1) 1,000 steps of energy minimization restrained on all heavy atoms with 10 kcal/(mol·Å2
)

force constant;
(2) 500 ps (1 fs time step) of MD simulation time, to heat the system from 100K to targeted
temperature (290 K in HiQ27 simulations), with the same restraints as in step 1;

(3) 1,000 steps of energy minimization restrained on all backbone atoms with 10 kcal/(mol·Å2
)

force constant;
(4) 500 ps (1 fs time step) of MD simulation and heating, with the same restraints as in step
3;

(5) 500 ps (1 fs time step) of MD simulation with 1.0 kcal/(mol·Å2
) force constant restraints

on backbone atoms;

(6) 500 ps (1 fs time step) of MD simulation with 0.1 kcal/(mol·Å2
) force constant restraints;

(7) 500 ps (2 fs time step) of unrestrained MD simulation to finish the equilibration.
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Chapter 4

Strategic Refinement of
Homology-Modeled and GB-Folded
Protein Structures

4.1 Abstract

The refinement of protein structures has recently benefited from more accurate force
fields and short MD simulations with backbone restraints. Strategic refinement trials of
structures from homology modeling and ab initio folding using GB solvent are reported here.
In the GB-folded data set, explicit solvent simulations stabilize the starting structures but
do not significantly refine them. In the CASP data set, implicit solvent simulations starting
from both crystal structures and structures generated by homology modeling indicate our
ability to refine near-native structures, but improvements are on the regional scale. Both
the best RMSD conformation in the trajectory and clustering analysis are used to identify
improvements in the refinements. While there are cases where we could not improve the
structure further, we are also able to rectify wrongly positioned loops within a nanosecond
of simulation time and thus to refine the overall structure.

4.2 Introduction

During the last 6 years, the numbers of sequences in UniprotKB/TrEMBL database in-
creased by a factor of 8, from 13 million to over 109 million[162], while the numbers of
protein structures deposited in the Protein Data Bank (PDB) only doubled, from around
70,000 to around 138,000[163]. Therefore, when experimental structures of biomolecules
are not available, computational structure predictions meet the demands and offer possi-
ble working models, thus they serve as indispensable tools. Current methods, especially
template-based modeling, are successful in predicting overall folds for proteins. In light of
evolution theory, if one structure of the same protein family has been solved experimentally,
the structures of the other members could be rebuilt because the spatial arrangement of 3D
structure is usually conserved within the same protein family[164]. More than two decades
of Critical Assessment of Techniques for Protein Structure Prediction (CASP) since 1994
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have documented and promoted these progresses[165, 166].
However, the Cα-RMSD of those predicted structures of large proteins are typically

greater than 4 Å[166, 107, 24, 167]. These structures need further refinement in order to
reach the accuracy for interaction design, or virtual screening. Meanwhile, the experimental
structural information coming out of NMR, SAXS, cryo-EM, and sometimes crystallography
studies is of low resolution thus requires to be refined. Although the scope and accuracy of
comparative modeling have been increasing, and ab initio structure predictions have been
demonstrated on diverse sets of fast-folding proteins, to predict structures closer to the native
structure than to the original templates still proves very challenging[168].

Protein refinement category has been set up since 2006 (CASP 7) to blindly evaluate
the state-of-the-art protein refinement methodologies[165]. The methods employed for this
endeavor include Molecular Dynamics, fragment and knowledge-based approaches, elastic
network models, and hydrogen bond network optimization etc.[168]. Two factors are used
to determine the refinement progress: (1) the ability to sample around the native structure
efficiently (sampling & accuracy); (2) a scoring function that can correctly identify the
native/near-native states (selection)[169].

The knowledge-based, or statistical potential, is one of the two major commonly relied
energy functions in the assessment of structural models. These potentials derive structural
features such as torsion angles, solvent exposure, crystal environment, hydrogen bond ge-
ometry from the Protein Data Bank. Yang Zhang and co-workers have pioneered the field
using iterative threading assembly refinement (I-TASSER) server [170, 171, 172], where in
the refinement step, constraints from threading alignments and PDB structures are used in
fragment assembly simulation and hydrogen bonding networks optimization. KoBaMIN web
server does protein structure refinement based on minimization of potential of mean force
that considers the solvent effect, side chain rotamer positions, etc.[173]. Jones Membrane
potential is able to utilize the sequence, structure and lipid environment for refining cor-
rect orientations for membrane proteins[174]. 3Drefine refinement protocol includes iterative
optimization of hydrogen bonding network and atomic-level minimization using knowledge-
based force field[175]. Also, protein evolution information[176] has been applied to generate
pairwise residue contacts, which could be employed as structural restraints. In terms of the
sampling, however, low resolution initial conformation search and rigid body rearrangement
of structural segments often suffer from conformational traps.

The physics-based potentials, especially referring to a variety of molecular dynamics
methods, have endured trial and errors in structure refinement as well. Based on physic-
ochemical principles, MD using mechanical forces, arguably, should provide the ultimate
potential functions for protein structure modeling[177]. Furthermore, it is in theory more
transferable for more general purposes, such as in studying protein misfolding and aggrega-
tion. Although D.E. Shaw and co-workers have pointed out that force field (Charmm 22*
and modified TIP3P solvent) being inaccurate might be the major factor of unsuccessful
refinement[178], to refine protein structures using MD have been shown to be plausible. For
example, Michael Feig and co-workers have successfully applied backbone-restrained short
MD simulations in Charmm22* and modified TIP3P explicit solvent since CASP 9[179, 180]
and have protocolized PREFMD (Protein structure REFinement via Molecular Dynamics)
and locPREFMD web servers to improve the model quality of template-based structures us-
ing MD and structural averaging. Yun-Dong Wu and co-workers have applied their RSFF2
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and TIP3P MD simulations to refine 30 of the CASP 10 structures and achieved better
averaging improvement, using even weaker restraints[119].

In other cases, combinatorial methodologies have employed potentials from both sides
and complemented each other efficiently. For example, Zhang et al. used fragment-guided
MD to sample conformations and refine protein structures to atomic-level, where the MD
energy funnel has been biased by the distance information from PDB fragmental analogs[181].
Another interesting example is from Fan et al. where hydrophobicity of solvent was altered in
MD simulations to change intramolecular hydrogen bonding, secondary structure breakdown
and reformation and rearrange poorly packed regions by mimicking function of chaperones
(Chaperone-Hamiltonian)[169]. Rosetta score function that based on physical and statistical
terms are utilized in combination of MD to interactively refine globular and membrane
proteins [182, 183, 184], referring or not referring to experimental constraints.

In this work, we are interested in protein refinement problem, as well as building bench-
marks for understanding how implicit solvent performs on more real-world problem like
protein structure refinement, when both accuracy and sampling are thought to be fueled by
recent ff14SBonlysc side chain modifications[23] and GBNeck2 solvent[62].

Since protein folding to near-native structures has been shown accessible by employing
implicit solvent (GBNeck2) with a combination of ff14SBonlysc force field and GPUs, we
intend to further test the accuracy of our model on the protein refinement problem. To
validate our physics-based methods, it is essential to try improving protein structures by
no means of experimental restraints or statistical potentials. First part of this chapter is
to refine the most populated structures as a follow-up of GB folding experiment, which are
still 2-6 Å away from the native NMR structures. For the second part of this chapter, we
applied and analyzed the capability of implicit solvent in refining structures from template-
based conformations provided by CASP 11. We left the proteins unrestrained for accuracy
diagnosis and indeed we observed issues that have been elaborated in the first two chapters,
including the lack of nonpolar term in implicit solvation as investigated in Chapter 2 and
the backbone secondary structure preferences studied in Chapter 3.

4.3 Methods

4.3.1 Refinement targets

GB folded targets

We first applied ff14SB and TIP3P to refine the most populated cluster representatives
sampled in the protein folding experiment using ff14SBonlysc and GBNeck2[24]. The in-
formation about all three proteins (BBA, HP36 and proteinB) has been listed in the Table
below. The initial conformations were the representative structures from clustering anal-
ysis on 250K and 300K temperature trajectories, respectively, as described in this folding
experiment[24].
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Table 4.1: 3 GB folded targets and their structures

System BBA HP36 proteinB
AA 27 36 47
Tm(K) no Tm reported 343 >363
RMSD region 4-26 or 4-14,14-26 3-32 2-44

Cα-RMSD (Å) 4.6 1 5.1 2 2.3 1 2.6 2 4.2 1 3.3 2

Structure

Note: 1 1st populated cluster from lowest temperature trajectories (BBA 244 K, HP36:
250 K, proteinB: 250 K). 2 1st populated cluster from 300 K trajectories. The initial struc-
tures of each protein (dark blue for lowest temperature cluster representatives and light blue
for 300 K cluster representatives) are overlapped with native structure in red, respectively,
based on the Cα atoms in the RMSD regions.

CASP11 refinement targets

All 37 targets from the CASP11 refinement data set were examined for refinement. The
detailed experimental information and structural features are listed in Table S4.1. Upon
careful comparison of provided templates and experimental structures, we kept 30 proteins
that (1) come with experimental structure in the downloaded database (see details in Note
for Table S4.1), and (2) do not contain missing residues in the template (except only tail
residues are missing). The selected 30 proteins and the quality of template structures are
listed in Table 4.2. Ranging from size (#amino acid) 62 to 265, the templates provided by
CASP11 are of various initial RMSD values and GDT-HA scores.

Table 4.2: 30 studied CASPR11 targets and the template model quality

target AA
Cα-RMSD of
initial model

Cα-RMSD of
CASP #1 rank1

GDT-HA of
initial model

GDT-HA of
CASP #1 rank1

TR228 84 3.92 3.148 55.66 66.37
TR2742 194 6.80 5.367 29.10 28.55
TR280 96 4.03 3.006 59.37 71.88
TR759 62 4.23 2.116 45.16 62.10
TR760 201 3.14 3.115 57.71 58.70
TR762 257 3.07 2.162 70.82 72.76
TR765 76 2.58 2.245 59.09 72.73
TR768 143 2.61 3.634 64.69 72.90

Continued on next page
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Table 4.2 – continued from previous page

target AA
Cα-RMSD of
initial model

Cα-RMSD of
CASP #1 rank1

GDT-HA of
initial model

GDT-HA of
CASP #1 rank1

TR769 97 1.74 1.219 59.80 72.68
TR772 198 4.78 4.615 52.52 53.78
TR7763 219 3.22 3.183 64.27 68.61
TR780 95 2.73 2.505 54.47 60.00
TR782 110 1.93 1.757 65.23 74.32
TR783 243 3.26 2.679 58.02 64.09
TR786 217 3.62 3.716 49.08 54.15
TR792 80 1.99 1.478 57.81 75.31
TR803 134 5.97 7.241 34.33 38.25
TR811 251 1.45 1.191 73.51 76.59
TR816 68 2.53 1.154 51.84 74.27
TR817 265 1.81 1.699 66.32 71.04
TR821 255 2.45 1.634 49.02 63.63
TR8222 121 4.21 4.222 30.48 37.28
TR827 193 3.75 2.771 35.23 48.31
TR829 67 6.16 1.216 51.12 76.87
TR833 108 4.71 2.254 62.27 64.81
TR837 121 2.95 2.685 43.80 48.76
TR848 138 3.78 2.625 58.88 63.95
TR854 70 2.27 2.080 60.36 66.42
TR856 159 2.68 2.659 62.26 63.68
TR857 96 4.00 4.523 34.12 10.10

Note: 1 CASP #1 rank is the best reported result among all the CASP11 Refinement
submissions. 2 System of missing tail residues in the template structure, so it differs from
the native structure in the tail missing residues.3 Ser 18 is phosphorylated in crystal structure
and mutated to Ser in simulations.

4.3.2 Simulation details

GB folded targets

Two GB-folded structures and one native structure were loaded and built in LEaP with
ff14SB and TIP3P explicit solvent. For three structures in each protein, the same number
of TIP3P waters were added to ensure the consistency (buffer size > 8 Å in all cases). Short
equilibrium including minimization and short MD simulations were carried out to equilibrate
the water densities and solute structures to 300 K (detailed protocol described on Page 72).
800 ns, 600 ns and 400 ns, respectively of TIP3P simulations were carried out for BBA,
HP36 and ProteinB after equilibrations.
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CASP 11 refinement targets

Different from GB folded targets where only explicit solvent was used with ff14SB, for
CASP11 targets, we compared two different combinations of computational models (1)
ff14SBonlysc + GBNeck2 and (2) ff14SB + TIP3P. In each case, one template structure
and one native structure were set up and simulated using the same parameters except differ-
ent starting coordinates. For TIP3P solvent, 8 Å of water buffer was added to both template
and experimental structures. All the initial structures were built in LEaP and equilibrated
following the same protocol as described on Page 72. For TIP3P solvent simulations, at least
40 ns of simulations were carried out in both native and refinement runs; for GBNeck2, at
least 100 ns of simulations were carried out and analyzed.

REMD simulations using ff14SBonlysc and GBNeck2 were carried out for all except
TR228, TR280, TR759, TR760, TR765, TR817, TR829 and TR833; these systems were
excluded because MD simulations from native structures were stable at 300 K for these
systems. Respectively, more than 300 ns of REMD simulations for the 22 systems were sim-
ulated from the template structures to enhance the sampling, with the highest temperature
at 300K. The temperature ladders are included in Table S4.2. The lowest temperature
replica, respectively, was analyzed for the percentages of structure refined and cluster anal-
ysis.

4.3.3 Evaluation Criterion

RMSD calculations were used to determine the refinement level of structures coming out
of MD simulations. For GB folding proteins, we histogrammed the RMSD distributions
of MD simulations to show to what extent the simulated structures were refined compared
with the initial RMSD. For CASP11 refinement targets, ∆RMSD values were employed to
measure the change of Cα-RMSD against native structure in simulated structure with respect
to the initial template model, a negative value indicates the template model is refined. In
CASP, two other metrics are also helpful for global structure quality determination, namely,
GDT-score and TM-score. In our analysis, all three metrics have been considered but only
the data using RMSD are shown.

4.4 Results and Discussions

4.4.1 Refinements from GB predicted structures

The short MD simulations in ff14SB and TIP3P for all three proteins are initially from the
top cluster representative structures predicted in microseconds of REMD using ff14SBonlysc
and GB[24] starting from only sequence information. The RMSD histograms of those REMD
simulations are compared with our MD simulations in this work, shown in Figure A of 4.1
for BBA, S4.1 for HP36 and S4.2 for ProteinB.

For BBA, the highest peak observed in 243.8 K trajectory in Figure 4.1A corresponds
to the 4.6 Å structure shown in Table 4.1 and the largest cluster (shown no apparent peak
in Figure 4.1A) representative structure corresponds to the 5.1 Å structure shown in Table
4.1. When these two structures and native structure are solvated and simulated in ff14SB

79



and TIP3P, the RMSD histogram in Figure 4.1B indicates that MD simulated structures
in terms of overall RMSD are not improved, as they all center around the original starting
RMSD values. If we focus on the more local regions of BBA, however, we still see large
improvements in the N-terminal hairpin structure and C-terminal helix. As seen in Figure
4.1C, when the hairpin is overlapped for the initial and native structures and the RMSD
values are measured when this region is used in superimposition, RMSD distributions of
simulations starting from both initial structures shift left towards smaller RMSD values. In
Figure 4.1D, the helical region is refined throughout the whole MD simulations, as from
both initial structures, the RMSD distributions measured with respect to the helical region
in native structure, are almost all on the left of initial points. This result is interesting as it
suggests that short MD simulations in explicit solvent are able to refine structures locally.
But whether longer simulations are able to further refine the global structures are yet to be
investigated.

For HP36, as the initial structures are originally less than 3 Å from the native structure, it
is more challenging to get them refined. But we still see improvement throughout the whole
short MD simulations as shown in Figure S4.1B; the RMSD distributions of refinement runs
are even of narrower width compared with native run. One explanation for the immediate
refinement of GB-folded HP36 structure is the necessity of nonpolar term in order to stabilize
the HP36 native structure, which has been thoroughly investigated in Chapter 2. For
ProteinB, the 3.3 Å structure is not as refined as the other 4.2 Å structure throughout the
MD simulations as large RMSD distribution left-shift is only observed for the latter run not
the former run.

As described in the Introduction, restrained MD simulations in explicit solvent have been
employed by Mirjalili and Feig et al.[179, 180] in CASP competitions and have achieved over-
all success. But in our studies, instead of following their protocols, we tried a different force
field and explicit solvent model (ff14SB and TIP3P vs. Charmm22* and modified TIP3P
used by them) and found that short MD simulations using explicit solvent do not facilitate
large conformational changes as was also concluded by them[179, 180]. Since our goal is
not to perform better in CASP competition overall, we chose to try more aggressive refine-
ment using unrestrained MD simulations in implicit solvent, rather than more conservative
refinement using restrained MD simulations in explicit solvent. Therefore, in the rest part of
this chapter, we show more practical refinement trials using unrestrained MD and implicit
solvent, with CASP11 data set. Unrestrained explicit solvent simulations are also carried
out for comparison.
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Figure 4.1: BBA GB-folded refinement, A. RMSD distributions of MD simulations at 300K
from extended and native structures, as well as REMD simulations extracted from tempera-
tures 243.8K and 300K from extended structure. This figure is adapted from the Supporting
Info of the GB folding study[24]; B. RMSD distributions of MD simulations at 300K from
native structure of BBA, and two top cluster representative structures from the REMD tra-
jectories. The starting RMSD values are denoted on the upper x-axis and indicated as dashed
lines; C. RMSD distributions of the same simulations as shown in B except the residue 4-14
Cα-atoms are superimposed in RMSD measurements. The initial RMSD values and struc-
tures are illustrated, shown to overlap with native structure in red and excluded regions in
gray; D. RMSD distributions measured with residue 14-26 Cα-atoms superimposed.

4.4.2 Stability of CASP11 experimental structures in MD

Short MD simulations starting from experimental structures are first analyzed as con-
trols. For explicit solvent results, as shown in Figure 4.2, all the MD simulations from
native structures are more than 40 ns long and stay close to 1-2 Å RMSD from native struc-
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tures. For implicit solvent results, as shown in Figure 4.3, are of longer simulations and
larger fluctuations compared to the explicit solvent counterparts. Among the 30 proteins, 16
(TR274, TR280, TR759, TR760, TR765, TR769, TR772, TR776, TR780, TR782, TR817,
TR829, TR833, TR848, TR856, TR857) of them stay at or below 5 Å in average RMSD,
another 10 of them sample high RMSD structures back and forth, while 4 (TR228, TR803,
TR827, TR854) of them rise to more than 10 Å away right at the beginning of simulations.

Figure 4.2: Cα-RMSD against native structure for refinement and native TIP3P + ff14SB
MD simulations. The refinement MD (black line) runs start from initial template structure
and the native MD (red line) runs start from equilibrated experimental structures. The green
dots at 0 time point in every subplot indicate the various initial RMSD values of template
structures. The subplot titles are colored by secondary structures of this protein: mainly
anti-parallel beta in blue, helix bundles in magenta, mix of helix & anti-parallel beta in
green, parallel beta in black.

As we are not only interested in whether the accuracy of native simulations satisfy the
refinement requirement but also evaluating the accuracy of our models at the same time, we
take a step off the refinement results but to focus on why the accuracy in some proteins are
worse than others. We first categorize all 30 proteins into four groups: anti-parallel beta
structures, helix bundles, mix of helix & anti-parallel beta as well as parallel beta structures.
Among the 16 stable native structures, 9(TR274, TR280, TR760, TR772, TR780, TR782,
TR833, TR848, TR856) of them are mainly anti-parallel beta structures, 5 (TR759, TR765,
TR769, TR817, TR829) of them are mixed helix and anti-parallel beta structures, 2 (TR776,
TR857) are parallel-beta, while none of them is helix bundle structure. Among the 4 proteins
of > 10 Å deviations, 3 (TR228, TR827, TR854) of them are helix bundle structures, and
1 (TR803) is helix & beta mixture. There are also accuracy issues for the rest 10 proteins
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Figure 4.3: Cα-RMSD against native structure for refinement and native GBNeck2 +
ff14SBonlysc MD simulations. The plotting and denotation fashion are the same as Figure
4.2.

with our computational model, but we will focus on the most outstanding problems for now.
The fact that none of the helix bundle structures are stabilized in our simulations means

our computational model is specially challenged by proteins abundant in helical structures.
There are two aspects of this instability issue: (1) it could be the local helices that are not
stable and transformed to other secondary structures; (2) it is also the tertiary structure of
relative arrangement between the different helix bundles that go through a thermal unfolding.
The local helical propensities point to the issues in backbone parameters, while the more
global thermal instability is ascribed to the lack of nonpolar term in implicit solvent. As
both issues have been addressed in details in Chapter 3 and Chapter 2 respectively, the
observations instead of causes and modifications are to be elaborated in this chapter.

We then analyzed the secondary structure conservation for the native simulations. Table
S4.3 and Figure 4.4 summarize the percentages of helical, extended and coil regions with
respect to the percentages in experimental structures. The general trends in each secondary
structure fractions are: for helical percentages, nearly one third of the proteins lose helical
fractions by more than twice of the corresponding standard deviations; meanwhile more than
half of the proteins gain coil percentages; for beta percentages, it is a mix of gain and loss,
as the parallel-beta percentages decrease while anti-parallel beta percentages increase.

Two helix bundle proteins (TR854 and TR228) outstandingly loss their helical percent-
ages compared to the fractions in crystal structures, after 400 ns of MD simulations in
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ff14SBonlysc and GBNeck2. For TR854, 71% of helical fraction is lost to 47 ± 9%, with the
diminished percentages converted to coil structures (which rises from 29% to 48 ± 9%). The
overall RMSD changes indicate the loss of critical contacts or helical regions that are respon-
sible for the stability of this protein. It also suggests that although helical structures are not
folded all the time, they have not misfolded into other secondary structures. However, for
TR228, 79% of helical percentage decreases to 33 ± 9%, with extended percentage increases
from 0% to 12 ± 6% and coil percentage from 21% to 55 ± 7%. This is exceptionally large
percentage of helical structures converting into the extended/beta in secondary structures,
as it points out to not only the thermal instability but also backbone SSE propensity issues,
which have been observed in the helical propensity test carried out in Chapter 3.

Figure 4.4: Secondary structure elements (SSE) lost indicates stability issue. The SSE
(helical in blue, extended in red and coil in gray) percentages measured in DSSP[41] for
crystal structures and the first 400 ns of ff14SBonlysc+GBNeck2 MD simulations. The
diagonal dashed line indicates perfect agreement.

Even though we have observed inaccuracy in native simulations, we continued to run the
refinement simulations from template structures and focus on the systems where we did well
in stabilizing the native structures. In cases that sampling might be the issue, we additionally
apply REMD as simulated annealing approach to enhance the sampling and accumulate the
preferred structures to low temperature trajectories.
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4.4.3 Best frame in simulations for CASP11

We summarize all the best sampled conformations for 30 systems with respect to the
initial RMSD, calculated as ∆RMSD. The best results reported by CASP participants are
listed as a comparison.

As shown in Table 4.3, among all the proteins, 23 (all except TR760, TR783, TR803,
TR811, TR817, TR822 and TR854) of them have been refined by at least one of the sim-
ulations, if only the best frames are examined. If there was just one or two simulations
get initial structure refined, we would consider them as anecdotal success as it may not be
reproducible well enough, however, in this data set, there are 11 out 23 proteins where we
are able to see consistent success comparing across all simulations using GB combined with
ff14SBonlysc (MD and REMD) and TIP3P combined with ff14SB (MD at three tempera-
tures). In 8 (TR280, TR765, TR772, TR776, TR780, TR786, TR816, TR833) out of these 11
systems (plus: TR759, TR827 and TR829), we are able to sample better than best-reported
from CASP participants.

It is not an overall accomplishment in refinement for us nor a fair comparison for the
CASP participants as the best-reported RMSD values are the results predicted without
experimental structures available. However, it is noteworthy to see the great potential in
implicit solvent simulations as they perform almost as well as explicit simulations, with orig-
inally thoughts of cons in accuracy. Among all the 23 cases that ever got refined structures
in short simulations, except the 11 cases where better conformation appear in all simula-
tions, half of the refined cases are only found in explicit simulations (TR274, TR821, TR837,
TR848, TR856, TR857); in the other half, implicit simulations are also comparable (TR762,
TR769, TR782, TR792), and could also take the lead (TR228, TR768) meaning only implicit
simulations got refined structures. From our observation, the capability of implicit solvent
refining template structures on CASP 11 data set is almost as competent as explicit solvent
using the same amount of time and resources.

Although there are 16 of them stabilized below 5 Å in native simulations, the 24 systems
that ever got refined do not entirely include the 16 stabilized proteins. For example, TR760
and TR817 have shown great stability in native simulations as seen in Figure 4.3 are among
the 4 systems that have not sampled better conformation than the initial ones. It is very
likely that given longer simulation time, better structures could appear in the trajectories,
however, the refinement have already become very challenging since both of them start at a
very close to native structure RMSD (initial RMSD of TR760 template is 3.14 Å and TR817
is 1.81 Å). But good initial structure is also not the only deterministic factor contributing to
the refinement difficulty, in systems such as TR765 (iRMSD = 2.58 Å), TR780 (iRMSD =
2.73 Å) and TR816 (iRMSD = 2.53 Å), even though the initial structures are pretty good,
we are still able to sample better conformations in all simulations. Therefore, the factors
that lead to the success rate of refinement are a mixture of starting point and secondary
structure dependent.

In the next section, we are analyzing the refinement results from a more practical point
of view, as in real CASP competition and protein refinement scenario, there is no prior
knowledge of experimental structure as for us to pick out the best.
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4.4.4 Larger cluster size indicates higher confidence in refinement

We do RMSD-based cluster analysis on the simulations thus to blindly determine which
structure or structural ensemble is more preferred in our physics-based models. Figure 4.5
summarize all the MD results, the REMD results are also linked with the corresponding MD
one for the improved cases.

Figure 4.5: Refinement level for each protein considering the top cluster of refinement MD
simulations. All 30 systems are displayed as the size of this protein (#AA) vs. ∆Cα-RMSD
of refined level. RMSD is calculated from the representative structure for the top cluster,
with respect to crystal structure (RMSDcrystal) or initial template structure (RMSDtemplate).
∆RMSD is calculated from the RMSDcrystal - RMSDtemplate. ∆RMSD below 0 (red dashed
line) means this representative structure is refined as it is moved towards the crystal structure
compared with the initial template; ∆RMSD above 0 means our refinement runs turn in the
structures that are worse than initial template. Each filled circle is labeled with the target
name. The size of circle means the size of that cluster (top right legend box). The cool-
to-warm colors encode the small-to-large RMSD of initial template against crystal structure
(bottom right legend box). MD results are linked to REMD results through black dashed lines
with black diamond only on top of REMD circles; 5 systems that REMD improves/maintains
the refinement are shown.

As indicated by the sizes of the filled circle close to or below the 0 ∆RMSD baseline, the
proteins that achieve overall negative ∆RMSD (meaning would be blindly refined success-
fully) also possess larger cluster populations. In the cases where MD simulation does not
frequently sample a stable conformation (meaning the 1st largest cluster has < 20% popula-
tion), REMD simulations improve sampling and return more refined structures, at least not
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getting worse, as seen in TR759, TR780, TR782 and TR848. Other cases such as TR829,
TR816, TR765, TR769, TR280, TR833, TR817 (listed in the order of chain length), MD
simulations are able to sample stable refined/close to refined structures with > 50% pop-
ulations; all of these cases overlap well with the systems that could be stabilized in native
simulations, which suggests that the stable/refined protein systems are reproducible thus
not anecdotal successes.

Again we noted that the initial RMSD values of the templates are unrelated with the
refinement confidence. We have discussed in the previous section 4.4.3 that the difficulty for
already good template structures (with < 4 Å RMSD) to get refined does not decrease using
the best best frame as assessment criterion; here we also do not see apparent correlation
between the refinement level and initial RMSD of templates using cluster representatives.
However, we should also note that in CASP refinements, the strategy of participants are
more conservative and focus on overall improvement with restrained in simulations, which
also pitifully limit the potential in MD to rectify the > 6 Å away structures going through
large conformational change. As shown in Figure 4.6A, a long chain of termini is misplaced
in the template structure provided, while in native structure, this termini is forming anti-
parallel strand with another beta strand located at the other side of the tertiary structure.
If restraints were applied to Cα atoms as was done by others[180, 179, 119, 185], this large
relocation of a whole termini would not be able to achieve towards a 3.82 Å refinement.

Figure 4.6: TR829 refined from GBNeck2 MD simulations. A. The template structure has
gone through a loop relocation and got refined. The ∆RMSD calculated fromRMSDcrystal−
RMSDtemplate is denoted on the conformation transition arrow. The Cα-RMSD value and the
population of two clusters (1st cluster and closest cluster) are denoted below the structures.
All color codes used for Figure 4.6, 4.7 and 4.8 are listed in the box. Blue, red and yellow
are for the largest cluster in GB refinement simulation, TIP3P refinement simulation, and
GB native simulation, respectively; cyan is for the provided template structure; transparent
gray is the native structure overlaid in the background. B. The native structure, sequence of
a segment of interest and first cluster structures from both refinement and native simulations.
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For the systems that are refined or close to refined determined by cluster analysis, struc-
tures overlapping with experimental conformations are shown in Figure 4.7. Compared
with TIP3P solvent results, the top cluster representatives generated from GB simulations
are of similar refinement level in TR280 and TR833. For TR280, two anti-parallel beta
strands have been both rectified to the right position with > 25% of cluster populations,
indicating high confidences. For TR833, anti-parallel beta structure with a helical tail has
been refined in GB, while of slightly lower ∆RMSD achieved in TIP3P 1st cluster represen-
tative (-1.74 Å for TIP3P and -1.69 Å for GB), the helical tail was misrepresented in TIP3P.
Figure 4.7C and 4.7D illustrate the refined or close to refined structures observed in the
top 3 clusters for TR765 and TR782, respectively. Although 1st clusters are not the best
ones, given long simulations, the relative population would likely vary and converge better.
Most of the helix bundle systems are observed to be stable in any preferred structure, thus
TR821 in TIP3P is shown in 4.7E, which is consistent with the native simulation results in
section 4.4.2.

Figure 4.7: Other refined examples from GBNeck2 and TIP3P MD simulations for A. TR280,
B. TR833, C. TR765, D. TR782, and E. TR821. The color codes and structural information
(∆RMSD, Cα-RMSD and cluster population) denotations are the same as those in Figure
4.6.

We also carried out REMD simulations for the systems that MD simulations from native
structures were not stable at 300 K. As a more enhanced sampling technique, simulations
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running at higher temperatures at the same time are able to jump over large energy barrier
and anneal better structures within the same amount of wall clock time. For example, for
TR768, only by using REMD-GB the better frames were ever sampled as seen in Table 4.3).
However, REMD simulations results are not always better than MD ones. For example, as
seen in Figure 4.5, the 1st cluster of MD simulation for TR816 has lower ∆RMSD than
that of REMD simulations. If the largest cluster in REMD is examined, as seen in Figure
4.8B, a partially unfolded helical region shows up as a more preferred structure; Figure
4.8E also illustrate the point that as more occurrences are observed from the first several
clusters, the percentage of frames got refined falls and stays low, until at the very end when
the clusters with negative ∆RMSD reappear in the trajectories. This also points out the
caveat of more sufficient sampling; if accuracy is doubt-worthy, more effective sampling will
only shed light to the errors faster but is not going to resolve the issue. On the contrary,
if it is truly the sampling hurdle with less accuracy issue, employing REMD will rescue the
systems that predict worse structures from only MD simulations. For example, in TR780
and TR848 as shown in Figure 4.8A and D, 4.8C and F, the most frequently sampled
structures are refined conformations, while insufficient sampling in MD simulations were not
able to sample and stabilize these structures as top clusters.

What is as important as getting global tertiary structure right, in high quality protein
structure prediction, is to get atomic details right. Closer examinations on the most suc-
cessful case TR829 alone shed light to the inaccuracy in using implicit solvent. As shown in
Figure 4.6B, when two helices should form a helix-kink-helix motif, we observe a wrongly
elongated helix followed by an extended loop, in both the 1st cluster of refinement and that
of native simulation. The instability of helical regions are also observed in TR765 in Figure
4.7C and in TR816 in Figure 4.8B.

The possible causes, especially for TR829, could be ascribed to (1) the lack of nonpolar
term in GB simulations, as the hydrophobic core formed by two nonpolar residue F45 and
F54 is abolished in the preferred structures. It is promising that with the incorporation
of nonpolar solvation developed in Chapter 2, improved stability of proteins would be
observed; (2) the helical propensity of residue backbone is not as high as it is supposed
to be, as was discussed in Chapter 3. A modified backbone parameter set might also be
helpful in stabilizing both the global tertiary structure and the local atomic details.
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Figure 4.8: Refined examples from REMD simulations. Two sub-figures in a column are for
one protein system, A and D for TR780, B and E for TR816, C and F for TR848. For each
system, the top sub-figure shows the structures of template structure and 1st cluster structure
overlaid with crystal structure, respectively. ∆RMSD, Cα-RMSD and cluster population
are denoted. The bottom sub-figure is dual y-axis chart as a function of time (ns). The left y-
axis is the percentages of structured refined (blue line), which is calculated by percentages of
frames with ∆RMSD < 0 using a sliding window of 10 ns. The right y-axis is the ∆RMSD
for all top10 clusters (red dots); dots are present when the structures corresponding to these
time points show up in one of the top 10 clusters, the largest population cluster is indicated
by a red, left-pointed triangle sign.

4.5 Conclusions

In this chapter, two types of protein models are strategically refined using MD simula-
tions. For the initial structures from GB-folded conformations, three proteins BBA, HP36
and proteinB are refined using explicit solvent. As the inefficiency in explicit solvent MD
simulations limiting conformation sampling effectively, implicit solvent are used for CASP
11 refinement test. Different from applying restraints used in previous studies, we run short
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MD simulations without restraints. Half of the 30 CASP11 proteins are stabilized in simu-
lations starting from experimental structures. The systems that are not stable are analyzed
for secondary structure compositions and are found mostly consisting of helical conforma-
tions, which point out the weakness of helical structures in the computational model. 23 out
30 systems have sampled refined structure while cluster analysis results indicate a strong
correlation of cluster size and refinement confidence. When global topology is refined, the
local structural inaccuracy points to the future directions for model improvement.

4.6 Supporting Information

Table S4.1: Summary of all CASP11 experimental structures in refinement category
Note:
1. All the starting models are from http://www.predictioncenter.org/download_

area/CASP11/targets/casp11.TR_startmodels.tgz, all the experimental struc-
tures are from http://www.predictioncenter.org/download_area/CASP11/

targets/casp11.domains_official.release11242014.tgz, PDB code are from
http://www.predictioncenter.org/casp11/targetlist.cgi.
2. N/A in the pdb code column indicates there is no related pdb code recorded in the
online CASP11 archive.
3. Except TR769 and TR857 are solved from NMR, all the rest experimental structures are
solved in crystallography and the resolutions are shown in the unit of Å.

Target AA pdb code Resolution Structure features

TR217 224 4wed (271-494 in pdb) 2.35
mix of helix,
antip.beta

TR228 84 N/A helix bundle

TR274 194 4qb7 2.74
antip.beta with one

parallel

TR280 96 4qdy (135-230 in pdb) 2.74
antip.beta with

little helix

TR283 168 N/A
parallel beta

protected by helix (pbh)

TR759 62 4q28 (46-107 in pdb) 2.64
mix of helix,
antip.beta

TR760 201 4pqx 2.39
antip.beta barrel +

sandwich

TR762 257 4q5t 1.91
parallel pbh,

antip.beta pbh mix

TR765 76 4pwu 2.45
mix of helix,
antip.beta

TR768 143 4oju 2
parallel sheet
(amyloid like)

Continued on next page
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Table S4.1 – continued from previous page
Target AA pdb code Resolution Structure features

TR769 97 2mq8 NMR
mix of helix,
antip.beta

TR772 198 4qhz 2.13 antip.beta sandwich

TR774 155 4qb7 2.55
antip.beta with

little helix
TR776 219 4q9a 2.86 parallel beta pbh

TR780 95 4qdy (10-134 in pdb) 2.74
antip.beta with

little helix
TR782 110 4qrl 1.79 antip.beta barrel

TR783 243 N/A
parallel pbh and

protected by antip.beta

TR786 217 4qvu 2.65
mix of helix,
antip.beta

TR792 80 N/A
mix of helix,
antip.beta

TR795 136 N/A
antip.beta, barrel/sandwich

(no expl. In folder)

TR803 134 N/A
mix of helix, antip.beta

(one helix very long)

TR810 243 N/A
parallel sheet barrel

pbh

TR811 251 N/A
parallel sheet barrel

pbh
TR816 68 N/A helix bundle

TR817 265
4wed (36-270,495-524

in pdb)
2.35

mix of helix,
antip.beta

TR821 255 4r7s 2.39
helix bundle (super

helix)

TR822 121 N/A
antip.beta sandwich
(starting is so off)

TR823 296 N/A
parallel beta barrel

pbh
TR827 193 N/A helix bundle

TR828 84 N/A
antip.beta (no expl.

in folder)

TR829 67 4rgi 1.73
mix of

helix+antip.beta
TR833 108 4r03 1.5 flat antip.beta
TR837 121 N/A helix bundle
TR848 138 4r4g (34-171 in pdb) 2.62 antip.beta
TR854 70 4rn3 (24-93 in pdb) 2.15 helix bundle

Continued on next page
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Table S4.1 – continued from previous page
Target AA pdb code Resolution Structure features
TR856 159 N/A whole antip.beta sandwich

TR857 96 2mqc (6-101 in pdb) NMR
parallel, antip.beta

mix

Table S4.2: Temperature ladders for the CASP11 REMD simulations

target REMD temperatures (K)
TR274 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR762 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR768 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR769 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR772 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR776 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR780 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR782 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR783 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR786 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR792 256.9, 265.0, 273.3, 281.9, 290.8, 300.0
TR803 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR811 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR816 256.9, 265.0, 273.3, 281.9, 290.8, 300.0
TR821 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR822 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR827 258.0, 262.4, 266.8, 271.3, 275.9, 280.6, 285.3, 290.1, 295.0, 300.0
TR837 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR848 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR854 256.9, 265.0, 273.3, 281.9, 290.8, 300.0
TR856 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
TR857 256.5, 262.3, 268.2, 274.3, 280.5, 286.9, 293.4, 300.0
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Figure S4.1: HP36 GB folding refinement, A. RMSD distributions of GB folding simulations;
B. RMSD distributions of refinement simulations. The color codes are the same as Figure
4.1

Figure S4.2: proteinB GB folding refinement, A. RMSD distributions of GB folding simu-
lations; B. RMSD distributions of refinement simulations. The color codes are the same as
Figure 4.1
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Table S4.3: Secondary structures conserved in 400 ns of GB-MD simulations compared with
the percentages in native structures

Target AA
Helical percentage Extended percentage Coil percentage
native MD-GB native MD-GB native MD-GB

TR228 84 0.79 0.33(0.09) 0.00 0.12(0.06) 0.21 0.55(0.07)
TR274 194 0.02 0.07(0.04) 0.46 0.45(0.02) 0.52 0.48(0.04)
TR280 96 0.05 0.05(0.03) 0.51 0.54(0.03) 0.44 0.41(0.04)
TR759 62 0.37 0.35(0.03) 0.30 0.29(0.04) 0.33 0.36(0.05)
TR760 201 0.08 0.05(0.02) 0.47 0.49(0.02) 0.45 0.46(0.03)
TR762 257 0.39 0.35(0.02) 0.24 0.25(0.01) 0.36 0.39(0.02)
TR765 76 0.32 0.31(0.03) 0.32 0.31(0.02) 0.35 0.38(0.04)
TR768 143 0.02 0.03(0.02) 0.35 0.31(0.02) 0.63 0.66(0.02)
TR769 97 0.43 0.40(0.04) 0.37 0.39(0.02) 0.20 0.22(0.04)
TR772 198 0.03 0.02(0.02) 0.37 0.44(0.03) 0.60 0.54(0.04)
TR776 219 0.47 0.43(0.03) 0.11 0.14(0.02) 0.42 0.43(0.03)
TR780 95 0.09 0.12(0.04) 0.55 0.50(0.03) 0.37 0.38(0.04)
TR782 110 0.10 0.04(0.03) 0.57 0.58(0.02) 0.32 0.38(0.03)
TR783 243 0.40 0.38(0.03) 0.21 0.17(0.01) 0.39 0.46(0.03)
TR786 217 0.27 0.28(0.02) 0.30 0.31(0.01) 0.42 0.41(0.03)
TR792 80 0.44 0.42(0.05) 0.14 0.14(0.02) 0.42 0.44(0.06)
TR803 134 0.33 0.27(0.04) 0.25 0.22(0.03) 0.42 0.51(0.05)
TR811 251 0.48 0.37(0.04) 0.15 0.16(0.01) 0.37 0.48(0.04)
TR816 68 0.71 0.67(0.07) 0.00 0.03(0.03) 0.29 0.30(0.07)
TR817 265 0.20 0.19(0.02) 0.28 0.28(0.01) 0.52 0.52(0.02)
TR821 255 0.78 0.69(0.04) 0.00 0.00(0.00) 0.22 0.31(0.04)
TR822 121 0.04 0.08(0.05) 0.55 0.46(0.05) 0.41 0.46(0.04)
TR827 193 0.71 0.61(0.03) 0.01 0.01(0.01) 0.28 0.38(0.04)
TR829 67 0.25 0.22(0.05) 0.32 0.35(0.02) 0.43 0.42(0.05)
TR833 108 0.08 0.03(0.02) 0.63 0.60(0.03) 0.29 0.37(0.04)
TR837 121 0.74 0.65(0.05) 0.00 0.00(0.00) 0.26 0.35(0.05)
TR848 138 0.13 0.07(0.02) 0.44 0.45(0.02) 0.43 0.47(0.03)
TR854 70 0.71 0.47(0.09) 0.00 0.04(0.03) 0.29 0.48(0.09)
TR856 159 0.02 0.02(0.02) 0.45 0.48(0.02) 0.53 0.49(0.03)
TR857 96 0.00 0.02(0.03) 0.53 0.51(0.03) 0.47 0.47(0.04)
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Chapter 5

Study on Mechanism of IAPP
Amyloid Fibril Initial Formation

5.1 Abstract

Islet Amyloid found in pancreas is correlated with the Type 2 Diabetes (T2D) Disease.
The major protein component of Islet Amyloid is Islet Amyloid Polypeptide (IAPP) or
amylin whose aggregation structure, mechanism and cytotoxicity in vitro and in vivo are
still unclear. With growing knowledge in both theoretical approaches and experimental
techniques in the field, we tried to validate the importance of α-helical intermediates in
the mechanism of IAPP amyloid formation. In this project, based on the experimentally
postulated mechanism of IAPP amyloid fibril initial formation, we applied the Molecular
Dynamics (MD) simulation method to the IAPP monomers and dimers, which provide more
understanding of the characteristics of monomeric IAPP and how IAPP molecules initially
aggregate. These findings will provide insight and experience as to further research needs.

5.2 Introduction

Proteins that form fibrils usually belong to fibrous proteins. However, different from
other fibrous proteins that commonly have a structural, supportive or motility role, amyloid-
forming proteins are often found in organs and tissues as disease-related, abnormal fi-
brous, extracellular, and proteinaceous deposits[186]. The deposits are mainly composed
of elongated fibers, with spines consisting of many-stranded β sheets, called amyloid fib-
rils. Amyloid-forming proteins have been identified and associated with a range of serious
diseases, including amyloid-β peptide (Aβ) with Alzheimer’s disease, prion protein (PrP)
with the spongiform encephalopathy (e.g. Mad Cow disease) and islet amyloid polypeptide
(IAPP) with type 2 diabetes (T2D)[187]. Because of the important roles amyloid fibrils
play in human diseases, studies into the structures and properties of amyloid fibril and its
formation are widely conducted.

Amyloid deposit found in the extracellular pancreases of patients is the hallmark of Type
2 Diabetes, T2D. IAPP, also known as Amylin, is the major proteinaceous component of
islet amyloid. It is a 37-residue polypeptide pancreatic hormone, which has been found in
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all mammals that have been studied so far[188]. This peptide is produced and stored in the
β-islet cells of the pancreas. It is related to the pathology of T2D because > 90% of T2D
patients exhibit amyloid plaques in their pancreas, and the severity of the disease correlates
with the degree of plaque deposition[189].

Amyloid fibrils have been found to display the characteristic cross-β fiber diffraction
pattern. This pattern was first observed by William Astbury in 1935[190]. With gradually
advanced techniques and methods, such as solid-state NMR, model-building constrained
by X-ray diffraction, people have known the most general common features among these
fibrils. (1) In all amyloid fibrils, the strongest repeating feature is a set of β sheets that are
parallel to the fibril axis, with extended strands nearly perpendicular to the axis, known as
a protofilament. (2) The β sheets can be either parallel or anti-parallel. (3) The sheets are
usually “in register”, meaning that strands align with each other such that identical side
chains are on top of one another along the fibril axis, called a steric-zipper structure[187].
Like other amyloid species, we do not yet have full atomic structures for Islet amyloid
fibrils, there are only models proposed for the fibril structures. Figure 5.1 (Amyloid fibrils
structure) shows a structural model of the full length IAPP fibril proposed by Eisenberg et
al. denoted in a review article[188].

More and more evidence recently points the cytotoxicity of disease-related deposits to
the oligomers of amyloid instead of the full length amyloid fibrils. In the case of Islet
amyloid, it has been suggested that the toxic oligomers are the factors causing cell membrane
disruptions[191]. Therefore, studies into the process of formation of amyloid fibrils is of
great importance. One of the reasons is that the mechanism of how the monomeric peptides
aggregate into insoluble and stable fibrils may provide possible therapeutic methods to avoid
even reverse the fibril formation process, in order to eventually heal the related diseases.

The formation process is thought to share common features with the crystallization pro-
cess, in which a slow lag phase is followed by a fast growth phase[191]. That conversion of
soluble monomeric peptide to insoluble amyloid fibrils often involves partially unfolded inter-
mediates [194]. Chemical cross linking studies reported that the production of mature fibrils
can go through some metastable intermediates, including the very early species: dimers,
trimers, tetramers, and higher order oligomers, but the results are sometimes conflicting
with one another[188]. In this project, based on the knowledge of the early state interme-
diates up to date, we are trying to explore the structures and characteristics of monomeric
and dimeric state of IAPP, in order to provide further insight for mechanism studies into
fibril initial formation.

IAPP is soluble and intrinsically unfolded in its monomeric state, but unaggregated
IAPP monomers do not adopt a classic random coil. The region of residues 5-20 of IAPP
has been observed via NMR to adopt helical φ,ψ angles in solution, although at low level of
persistency[195, 196]. Although early helical intermediates and their species have not been
identified so far in IAPP amyloid formation, there is evidence that directly or indirectly
implies that the α-helical regions of IAPP promote early dimerization. One study has induced
a persistent helical structure of monomeric IAPP by negatively charged model membranes at
a physiological pH[197, 198]. Within the negatively charged membrane environments in the
presence of detergent micelles, the angle between the N- and C-terminus helices constrained
to 85◦, the structure of IAPP at a neutral pH was solved via NMR[192]. It has an overall
kinked helix motif, with residues 7-17 and 21-28 in a helical conformation, with a 310 helix
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Figure 5.1: The proposed fibril formation mechanism analogous to the crystallization pro-
cess: soluble monomers aggregate and form oligomer core, which is further elongated to
full amyloid fibrils[191]. The experimentally proposed/characterized monomer (PDB code:
2L86[192]), oligomer (PDB code: 3G7V[193]) and amyloid fibril structures[188] are pointed
to in blue dashed frames.

from Gly33-Asn35, and Ser19 and Ser20 locate in the kink region (monomer structure in
Figure 5.1). Since we do not have IAPP monomeric structure in solution, this NMR
structure could reasonably work as a reference structure for RMSD calculations, and provide
full-length coordinates for building monomeric and oligomeric models concerning α-helical
intermediates. In another study, the crystal structure of a C-terminal truncated fragment of
IAPP fused to MBP[193] (a 370-residue maltose binding protein) can provide some insight
to dimereric state of IAPP (oligomer structure in Figure 5.1). Each of the monomers
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shows that IAPP can adopt an α-helical structure at residues 8-18 and 22-27, which have
similar regions compared with NMR structure (residues 7-17, 21-28). Taken together, all
the evidence has suggested the helical dimerization of IAPP may initialize fibril formation,
which could be a rational intermediate on/off the pathway of amyloid fibril formation.

Figure 5.2: Schematic diagrams of how an α-helical intermediate might promote amyloid for-
mation. A. disordered and α-helical monomers are shown in equilibrium, followed by dimer-
izations through N-terminal helices, which lead to fibril formation[193]; B. Initial oligomer-
ization is driven by the thermodynamic linkage between self-association of α-helix regions,
which generates a high local concentration of α-structure, promotes their stability and even-
tually leads to the formation of β-sheet-rich assemblies [199]. α-helices (N-termini) shown
as cylinders, β-strands (C-termini) as zigzagged lines. C. in both solution and membrane
environment, similar to the processes in A and B, α-helical regions in cylinders form parallel
oligomers that facilitate amyloid nucleation and mature fiber formation[196]. All three dia-
grams are adapted from corresponding publications. They are schematic and not meant to
imply a specific pathway of assembly.

Among all the hypotheses of oligomerization of pre-fibrillar structures, we see common
grounds in the α-helical intermediates thus we hold the hypothesis that α-helical structures
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are important for initiation of IAPP: the α-helical regions first associate to increase the local
concentration, then a phase transition appears and propagates throughout the whole chain
to finally form the fibrils. To be more specific, the initial aggregation of islet amyloid might
be driven by the formation of an oligomeric helical intermediate with helical structures
in the N-terminal region of IAPP. Once they have associated and interacted with each
other, a high local concentration of amyloidogenic C-terminal segment is developed and leads
to intermolecular β-sheet formation which then propagates through the sequence (Figure
5.2)[199].

In all mammals studied to date, IAPP is present and the sequences are largely conserved,
however, not all IAPP species are found to form amyloid[200, 201]. Humans, non-human
primates and cats form amyloid while rats and mice, which share the same 31 residues out
of 37 with humans, do not form amyloid in their pancreas. Comparative experiments carried
on rat IAPP (rIAPP) and human IAPP (hIAPP) have convinced, to some degree that the 6
different residues, especially the 3 Proline residues at position 25, 28 and 29 cause rIAPP not
to form amyloid[201]. Proline is known as a cyclic amino acid which often acts as a secondary
structural disrupter and also it is unfavorable in a β-sheet from the energetic point of view.

The only mutation naturally found in human at a low level is the substitution of Serine
at position 20 by a Glycine residue (i.e. single mutant S20G). This variant, which has been
shown to accelerate amyloid formation in vitro, has been suggested to cause a higher risk of
T2D even though only to a slightly higher degree[202, 203]. When carried out in experimental
studies, the acceleration degree of amyloid formation is notably higher than wild type IAPP
and S19G variant (Figure 5.3)[204]. In vitro experimental kinetics measurements indicate
that S20G variant greatly reduces the lag phase of amyloid formation, and leads to similar
morphology of full amyloid fibrils. Studies so far explain S20G accelerating rate by an
increased propensity to form a β-turn which resembles the β-sheet structure in the fibrils.
Glycine are turn promoters and residue 20 that is involved in this mutation lies right in the
turn region of the hairpin (residues 18–22)[205]. Other recent work has reported that in
Alzheimer’s Aβ peptide amyloid formation acceleration, stabilization of the turn structures
may be responsible[206], which could also possibly be true in the case of IAPP.

However, the experimental methods have their own limitations. Different experimen-
tal conditions lead to different, incomparable results. Part of the reason is the kinetics of
IAPP aggregation can be very sensitive to very small changes in sample preparation, buffer
composition, pH, even stirring frequencies during the measurement[188, 207]. In addition,
mutagenesis approach in amyloid formation study makes things more complicated compared
to the case of soluble globular proteins because the formation of different polymorphs and
the difficulty of fibril stability determination[188]. For the crystal structures that experi-
mentalists have obtained, they may also fail to convince people because the consequence
of crystal packing leads to artifacts and those structures may not reliable models of in
vivo structures. Furthermore, current standard spectroscopic methods lack both structural
resolution and/or time resolution which leaves a gap of knowledge between monomer and
fibril of IAPP during its formation process. In order to fill the understanding of how IAPP
monomers of α-helical propensity aggregate into β-sheet-rich fibrils, we employ theoretical
and computational methods, mainly molecular dynamics (MD) simulations.
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Figure 5.3: The fibril formations rates of IAPP and variants monitored by Thioflavin T
fluorescence intensity. A. The fluorescence intensity changes as a function of time for WT
IAPP (black dots), S20G (red dots) and S19G (gray dots). Data is from Rehana Akter in
the Dr. Daniel Raleigh’s lab, which has been published in Rehana’s Master Thesis[204].
B. The fluorescence intensity changes as a function of time for WT hIAPP (red) and rat
IAPP (black). Data from Ref[208]. C. Molecular Structure of thioflavin T. It can be used
as reaction rate monitor because when it binds to β sheet-rich structures, such as amyloid
fibrils in aggregation, the dye displays enhanced fluorescence and a characteristic red shift
of its emission spectrum.

In previous MD studies, the various components on the pathway to form amyloid, from
monomers[205, 209, 210, 211, 212], dimers[211, 213, 214], to fibrils[212, 215] of both hIAPP
and rIAPP have been modeled in solution and also in membrane environment[216, 217]. Due
to various methods and computational models used in simulations, the structural ensembles
of aqueous IAPP monomer in silico behave differently. Besides the random coil of IAPP
conformers that are consistently observed throughout all simulations, there are two other
major conformers being identified: a compact helix-coil/hairpin structure and an extended
β-hairpin structure. However, different results disagree on the relative ratio and the spe-
cific structures of each conformer. One of these findings disagree on the possible structural
components of proposed IAPP dimeric states. To be more specific, when IAPP monomers
dimerize, it is arguable whether dimers are initiated from helical monomers or hairpin struc-
tures; the question of which conformer do the IAPP dimers adopt leads to contradictory
mechanisms[213, 214]. One of the mechanisms was proposed and supported by Shea and
coworkers[213, 209]. Based on the assumption that β-hairpin structure sampled in monomer
simulation is a possible direct amyloidogenic precursor to β-sheet-rich fibril formation, they
proposed that dimerization of side-by-side assembly of β-hairpin monomers is on pathway
to form β-sheet rich oligomers. However, this dimer structure (shown in Figure 5.4B)
is associated through hydrogen bonding between the N-terminal residues of one β-hairpin

103



monomer and the C-terminal residues of another β-hairpin monomer; this N-terminus-C-
terminus interface is inconsistent with the mature fibril structures as shown in Figure 5.1,
the fibril model requires a in-register alignment of dimers (or oligomers) as shown in Fig-
ure 5.4A. In contrast, we have hypothesized the important roles of α-helical structures
in the monomeric and dimerization states, which is consistent with the helix-coil structure
regime[199, 193, 196, 192, 187].

To validate the importance of helical structures in IAPP dimerization, we explore two
ways of building a dimer model. One starting point of an IAPP dimer model is the crystal
structure obtained by Eisenberg and coworkers in 2009 (3G7V[193] shown as the oligomer
structure in Figure 5.1, i.e. Figure 5.4C ). It is an asymmetric unit that contains four
fusions of C-terminal truncated hIAPP connecting to maltose binding protein (MBP). With
the MBP chaperoning IAPP, a dimer structure was found to form by the N-terminal helices
from two IAPP molecules packing against each other with key contacts being made near
Phe 15, with 8–18 helices interacting at a 55◦ angle[193]. A second idea of IAPP dimer
model is inspired by the putative intermediate model illustrated in Figure 5.2C, Figure
5.4D is adapted from it. Although never observed in solved structures nor from previous
simulation results, this schematic dimer model embodies the association through α-helical
regions followed by a parallel-sheet phase transition, which could be an important precursor
of full-chain parallel-sheet structures as seen in the mature fibrils. These two ways of building
a dimer model for understanding hIAPP low-order oligomerization are reasonable and worth
exploration as they both emphasize the necessity of α-helical intermediates and it is through
the associations of helical regions that processes relevant to oligomerization proceed. The
first α-helical model (Figure 5.4C) is atomic-detailed and the second N-terminal α-helix
with C-terminal extended model (Figure 5.4D) is more conceptual, which means they may
not be exclusive of each other. However, we study them separately. The α-helical model
assumes dimer interface consisting of two N-terminal α-helical regions at an angle of 55◦,
while the N-terminal α-helix with C-terminal extended model assumes the importance of
N-terminal α-helices close in distance, as well as the C-terminal regions close as extended
conformations, so that a parallel-sheet could be facilitated in the amyloidogenic C-terminal
segments.

In this work, it is not our goal to settle the disagreement of monomer conformations
and compositions by applying one or two more computational models. Instead, we ask the
questions (1) whether MD simulations of IAPP and variants in monomers could validate
the importance of α-helical conformers and (2) how that would facilitate our understanding
of IAPP fibril initialization mechanism by further validating low-order oligomers (dimers)
models. To carry out the investigations, we first focus on only WT hIAPP monomer charac-
terizations. Then we present the structural and energetic differences found by simulations for
IAPP monomer variants. Lastly, we demonstrate how we built dimer models to understand
the oligomerization of WT hIAPP mapping to our hypothesis that α-helical structures are
important for initiation of IAPP fibrils.
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Figure 5.4: Four possible dimer models proposed by others (B and C) or hypothesized in
this study(A and D). A. The Eisenberg dimer model isolated from the full fibril structure
proposed by Eisenberg et al. as shown in Figure 5.1, with hydrogen bonding occurring
between the strands-in-register, i.e. the N-terminal region residues form hydrogen bonds
with N-terminal region only, the same with C-terminal regions. B. The Shea dimer model
identified from MD simulations in Ref[213] with a N-terminal region to C-terminal region
hydrogen bonding interface. C. The α-helical dimer model crystallized by Eisenberg and
coworkers (PDB code: 3G7V[193]), observed with a N-terminal α-helices dimer interface. D.
hypothesized N-terminal α-helical with C-terminal extended dimer model, it is a schematic
model referring to Figure 5.2C which has not been observed in solved structures nor from
previous simulations.

5.3 Methods

5.3.1 Hypothesis validation plan and system setup

IAPP monomer and its variants

We hold the overall hypothesis that α-helical structures are critical intermediates for
IAPP fibril initialization. The first priority, before we are able to validate the roles of α-
helical structures in fibril forming mechanism, is to sufficiently characterize the structural
ensembles of hIAPP monomers in physiological solution at atomic details. With respect
to the experimental kinetics data of IAPP and its variants, we further hypothesize that
the microscopic occurrences of α-helical structures are relevant to their macroscopic fibril
formation rates. The fibril-formation promoting variant (S20G) is likely to adopt the highest
α-helical content in monomeric states, while the fibril-formation disrupting variants (rat
IAPP, I26P) are less helical-prone; the fibril formation rates of other systems may also
follow similar trend with the α-helical fraction abundances.

Human IAPP and its variants including rat IAPP, S20G, S19G, I26P, C2SC7S, free C-
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terminus hIAPP (C acid), acetyl-truncated 8-37 and truncated 8-37 were studied in this
work. The sequence information for all systems is listed in Figure 5.5. The initial extended
structures were built in LEaP module of Amber version 12. In all the systems except rIAPP,
His18 was in neutral state. All the peptides except C acid were amidated at C-terminus. In
all except C2SC7S and the two truncated systems, a disulfide bond was added between the
sulfur atoms on Cys2 and Cys7 (:2@SG–:7@SG); to avoid energetic problems of forcefully
adding disulfide bond at the beginning of extended structure, the two residues were left as
CYX (residue name of Cys that is involved in disulfide bond in Amber) without adding a bond
until 10 ns of simulations. Sulfur-sulfur distances for each frame of the 10 ns simulation were
calculated and the shortest sulfur-sulfur distance conformation was then used to generate the
new topology and to serve as the new initial coordinate with disulfide bond. NMR structure
(2L86[192]) was used as the second initial structure for hIAPP with disulfide bond, amidated
C-terminus and neutral His18 from the beginning of simulations. The point mutations for
variants were done in the Swiss PDB Viewer software.

Figure 5.5: Sequences for WT, RAT, I26P, S20G, S19G, C2SC7S (experimentally mutated to
Serine to mimic reduced Cysteine at C2 and C7), C acid (C terminal with COO- charged)
and two versions of residue 1-7 truncated. All except C acid are amidated at C-termini.
Gray bridges indicate disulfide formation between the two connected Cystine.

106



Figure 5.6: Schematic
helix length visualiza-
tion

DSSP analysis was used to get secondary structure types and
regions throughout the simulations. Fractions of secondary struc-
ture of all systems were analyzed by ptraj implemented in Amber.
Among all the secondary structures, α-helix, especially the tran-
sient nature of helices formed in IAPP WT was further quantified.

To restore an accurate picture of transient helical structures in
our simulations, a visualization tool was developed as displayed in
Figure 5.6 where the formations of short helices could be quantified
and visualized with designating short lines to the residues where α-
helices are formed. Each row indicate one snapshot/time point of
structure in the simulations, each residue is marked as a short line

if this residue is assigned as α-helix in DSSP.
All the conformations sampled in our simulations provide useful structural ensembles

for comparisons with experimental data, such as the calculated average radius of gyration
(Rg) was compared to the values derived from NMR, Förster Resonance Energy Transfer
(FRET), or small angle X-ray scattering (SAXS) data, the average distances of aromatic
rings (Tyr, Phe, His and Trp) obtained from simulations was compared with fluorescence
intensities measured in FRET. Some calculations were done but not shown in this chapter
because no experimental data was obtained for comparison. For whoever gets interested in
continuing this work, the data has been archived for your reference.

α-helical dimer models

The specific hypothesis in modeling the α-helical dimer was to test the validity of this
α-helical dimer structure solved in crystallography (3G7V[193]) as a model for solution be-
havior. We also held a second hypothesis that if this dimer structure was a valid α-helical
dimeric intermediate, the co-crystallized maltose binding proteins which chaperon the dimer
formation would not be necessary for its thermodynamic stability.

As IAPP molecules in the crystal structure are C-terminal truncated fragment, the start-
ing structure of full-length hIAPP α-helical dimer model was obtained by modeling two copies
of the NMR structures (2L86[192]) onto the crystallized IAPP dimer segment(3G7V[193],
Figure 5.4C). The superimposition of the two monomers were based on the heavy atoms
of residue 8-17, which is the common helical region shared by these two experimental struc-
tures; in NMR structure, the α-helical region is 7-17, while the helical regions are 8-18 in the
crystal dimer structure. It was assumed that the co-crystallized maltose binding proteins
chaperon the dimer formation but are not necessary for its thermodynamic stability, thus
the MBPs were deleted from the system.

To keep the dimer together, a distance restraint was put on each monomer to prevent
the two monomers from flying away from one another. As IAPP monomers just transiently
sample α-helical structures without detergent micelles or other helix promoting reagents, to
thoroughly validate the role of N-terminal α-helices in this dimer model, we set up three
different dimer systems:
(1) two helices restrained (hlx) in the dimer in which restraints were put on 7-17 residues
to maintain the α-conformation of each monomer during the dimer simulations. All the
backbone hydrogen bonds of residues 7-17 were restrained to the distances in the NMR
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structure, with a force constant of 20 kcal/mol;
(2) two monomers unrestrained (unr) in the dimer in which no α-conformation restraints
were imposed;
(3) hybrid restraints were applied (hyb) in the dimer where one 7-17 residue region of the
dimer was applied with the helical restrained while the other monomer was left unrestrained.

Three measurements were employed to characterize the α-helical dimer systems in sim-
ulations. The first quantity is the distance between the N-termini of the two monomers
within one dimer system, termed N-N distance, which measures the center of mass dis-
tance considering all the heavy atoms in the N-terminal residues 7 to 17. 10.0 Å is the N-N
distance measured from the crystal structure (3G7V[193]) and also the starting N-N distance
for all three systems. Another dihedral angle formed by four atoms on the dimer backbone
was used to determine the relative angle formed by the two helix bundles. The four atoms
are amide nitrogen in residue 14 on the first monomer(14@N1), carbonyl oxygen in residue
10 on the first monomer (10@O1), carbonyl oxygen in residue 10 on the second monomer
(10@O2), and amide nitrogen in residue 14 on the second monomer (14@N2), which could be
denoted as dihedral N1-O1-O2-N2. The corresponding dihedral angle adopted in crys-
tal structure is 64◦. Throughout the MD simulations, these two quantities were tracked
for the three α-dimer systems. Furthermore, to validate the key contacts formed between
the two Phe 15 residues in the α-dimer crystal structure, the intermolecular interaction
energies throughout the MD simulations were calculated and decomposed to each residue
by MM-GBSA (Molecular Mechanics-Generalized Born/Surface Area) module in the Amber

package with GBNeck2 and surface tension of 5 cal/(mol·Å2
). Numerical SASA (gbsa=2)

was used to estimate the SASA for all the dimer molecules.

N-terminal α-helix with C-terminal extended dimer models

The other way of building dimer models followed the hypothesis that two in-register N-
terminal α-helices with C-terminal extended monomers (as shown in Figure 5.4D) might be
the precursor of mature fibril-like dimer formation. To validate this hypothesis, two groups
of dimer structures, namely the precursor group and the control group, were generated
to answer whether the in-register aligned dimers would be more likely to form parallel-sheet
mature fibril-like structure (Figure 5.7).
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Figure 5.7: Hypothesized scheme in which two monomers that have N-terminal α-helix
with C-terminal extended conformations (consistant with the schematic structure shown in
Figure 5.4D) must be aligned in-register (precursor group) to lead to the mature fibril-like
dimer (the same structure as shown in Figure 5.4A); while the dimer with α-helical regions
spatially apart and extended regions misaligned (control group) is not the right precursor.

As illustrated above, for the hypothesis validation, we designed two groups of dimer
molecules, whose monomeric states all adopt conformations that form an α-helix at the N-
termini meanwhile the C-termini stay pretty extended. This structure is consistent with the
schematic structure shown in Figure 5.4D). These dimer models were termed α-helical
N-terminus with extended C-terminus dimers. In the precursor group, two monomers
must be aligned in-register as to lead to the mature fibril-like dimer (the same structure as
shown in Figure 5.4A); while for the dimers in the control group, even though each monomer
maintains the same secondary structure features, if the α-helical regions were spatially apart
and the extended regions were misaligned, the probability of going through a phase transition
and forming fibril-like dimers would be significantly lower. Short MD simulations were carried
out for dimers structures in both groups. Had the perfectly validated scenario taken place,
for the dimers in the precursor group, thermodynamically stable dimer structures would
associate through the N-terminal α-helices and form parallel sheet at the C-terminal regions
first, and then gradually go through a phase transition to form fully parallel sheets. But for
the control group, we would not see these associations or intermolecular hydrogen bonding
formation, or phase transition in the same way. From a more realistic point of view, the
findings as stated below would also partially convince us the validity of this dimer model,
when the control group simulation results were compared to those in the precursor group,
if (1) the N-termini started spatially apart would not directly interacting and thus weaker
associations of helical regions would be observed (e.g. larger N-N distances); or (2) the
C-termini started not adjacent would not form parallel-sheet and thus less parallel-sheet
fraction would be observed.

As there was no relevant available experimental structure, we referred to the schematic
structure of Figure 5.4D and filtered the hIAPP monomer trajectories for the structures
that have N-terminal α-helix and C-terminal extended conformations. The criterion used
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for the filtering are (1) helical length > 4 (1 turn of helix) in N-terminal residue 1-21 region,
measured by DSSP and the analysis tool defined in Figure 5.6; (2) backbone RMSD <
2.0 Å of C-terminal residue 23-30 calculated against the fibril structure in Figure 5.4A.
Among the 12000 frames in the WT hIAPP monomer trajectory, 63 structures that satisfied
the above two criterion were further cut down to 7 structures (lost track of why it was these
seven); these structures of diverse topologies were then used as initial monomer structures
as shown in Figure S5.1 for docking to build relevant dimer models.

To build thermodynamically stable and reasonable dimer models, the macromolecular
docking program DOT 2.0 was used for the pairwise docking of selected monomer con-
formations. The docking protocol follows the tutorial written by Kevin Hauser http:

//simmerlinglab.org/wiki/index.php/Macromolecular_docking_with_DOT2.0. Unlike
just docking two monomers, a pairwise docking process was carried out, where every 1 of
the 7 monomer structures was docked to other 7 monomer structures, which generated 28
sets of dimer structures of various ranking scores (Figure S5.3 illustrates the top ranked
representative structures). All these 28 resulting highest scored dimer conformations were
collected as the dimer structures in the control group. For the the precursor group, as among
the 28 there was only 1 dimer structure that has small N-N distance and in-register aligned
C-termini, all the top 5 ranked conformations were manually checked and chosen by visu-
alization, which resulted in the 12 dimer structures as shown in Figure S5.2. Dimer 11
and Dimer 12 were triplicated due to their large similarity with the hypothesized dimer in
Figure 5.4D.

5.3.2 Simulation details

IAPP monomer and variants

All molecular dynamics (MD) simulations were fully unrestrained and carried out using
pmemd.cuda of Amber. For hIAPP Wild Type and its variants, ff14SBonlysc and GBNeck2
were applied as force field and solvent model. For each system, two steps of minimization were
applied first on all hydrogen atoms then on all side chain atoms, each step was followed by
a heating step to raise the temperature gradually from 100 K to 300 K. In the equilibration,
the force constants put on backbone atoms were reduced every 500 ps, respectively 2.0, 0.5,
0.1, 0 kcal/mol. SHAKE[39] was applied to constrain all bonds linking to hydrogen atoms.
Each system was allowed to produce without restraints for 4 µs. The temperature was set
at 300 K which was the temperature of which fibril formation rates in Figure 5.3 were
measured.

We also carried out simulations for hIAPP WT using other force fields combined with
explicit solvents using REMD starting from two conformations: (1) ff99SB+TIP3P, (2)
ff14SBonlysc+TIP3P, and (3) ff14SB+TIP3P. For each of the two starting conformation,
8.0 Å of TIP3P[101] water molecules were added as a truncated octahedral periodic box.
Equilibrations were done as described in the Supporting Information of Chapter 3 on Page
72. All the TIP3P REMD simulations were run in NVT ensemble; 8.0 Å was used as the non-
bonded interaction cutoff; PME was used for long range electrostatics; Langevin dynamics
with 1 ps−1 collision frequency was used; 48 replicas1 were used and each replica was run

1temperature ladders are 277.9, 279.7, 281.5, 283.3, 285.1, 286.9, 288.8, 290.6, 292.5, 294.3, 296.2, 298.1,
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for 4 µs. The 300.0 K trajectories were extracted and analyzed for the secondary structure
composition. The error bars were calculated from two simulations.

Clustering was done on a combined trajectory of monomer WT, S20G and S19G, each
system contributed 12000 frames of structures that were extracted from two runs of simula-
tions. The hierarchical agglomerative average-linkage algorithm in ptraj program was used.
The pairwise RMSD values were calculated based on the backbone atoms on residue 13 to
30, with an epsilon value of 3 Å, which produced 3601 clusters.

α-helical dimers

MD simulations for α-helical dimers were carried out using ff99SB and GBNeck2. For
the starting structure of the dimer model, an equilibration was done in the same fashion as
for the IAPP monomers. The corresponding α-helical restraints were added starting from
the last equilibration step. During the simulations, a distance restraint was put on the two
Cα atoms of Cys2 on each monomer to keep the dimer together. This was imposed by a
flat-well restraining function in which the force constant of 0 when the two atoms were <
60 Å while the force constant increased to 20.0 kcal/mol when the distance was beyond 60
Å. SHAKE[39] was applied to constrain all bonds linking to hydrogen atoms. The center of
mass translation and rotation were removed every 500 MD steps (1 ps). Each of the three
dimer model systems (hlx, hyb and unr) was allowed to run for 1.8 µs.

α-helical N-terminus with extended C-terminus dimers

The dimer model structures resulted from pairwise docking were parameterized using
ff14SBonlysc and GBNeck2. MD simulations for α-helical N-terminus with extended C-
terminus dimers were carried out for at least 2 µs after a similar equilibration process as
described for the IAPP monomers. No restraints were applied to keep the dimers close in
space nor to restrain the secondary structures.

5.4 Results and Discussions

5.4.1 Benchmark of four computation models in modeling hIAPP
monomer

For the hIAPP WT MD simulations, RMSD values (data not shown) of peptide backbone
were calculated with reference to the 1st frame of 2L86 NMR structure[192]. Compared to
IAPP monomer simulations that have done before[209, 213, 218, 212], although the charge
of monomers and water models vary from one to another, the intrinsically unfolded charac-
teristics of IAPP monomer remains, as no obvious local or global minimum is observed in
any of the trajectories.

Although no folded structures have been observed throughout the simulations, transient
secondary structures are adopted. As no consensus for IDPs (including hIAPP) on which

300.0, 301.9, 303.8, 305.8, 307.7, 309.7, 311.7, 313.7, 315.7, 317.7, 319.7, 321.8, 323.8, 325.9, 328.0, 330.1,
332.2, 334.3, 336.4, 338.6, 340.7, 342.9, 345.1, 347.3, 349.5, 351.8, 354.0, 356.3, 358.5, 360.8, 363.1, 365.5,
367.8, 370.1, 372.5, 374.9 K
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physical-based model reflects the actual secondary structure preferences, we first examine
across all the combinations we have simulated. The results are summarized in Figure
5.8. The α-helical and anti-parallel sheet fractions are sensitive to the changes of force
field/solvent model combinations. For α-helical fraction, we observe a reasonable agree-
ment between ff14SBonlysc+GBNeck2 with ff14SB+TIP3P, with minor inconsistency on
the residue 9 to 17. Compared to the nearly diminished α-helical fractions predicted in
ff99SB+TIP3P and ff14SBonlysc+TIP3P, the difference between the former group is nearly
negligible. Due to the formation of disulfide bonds between residue 2 and 7, turn structures
are observed in all simulations, with a 60% to 80% turn fraction from residue 4 to 6 predicted
by all simulations. For anti-parallel sheet fraction, the error bars are much larger compared
to other secondary structures due to the slow kinetics of β-structures formation and break-
down. However, across four different force field/solvent model combinations, common regions
centering at residue 9-11, 15-18, 26-31 and 35-36 are shared, as the two terminal regions form
a short anti-parallel sheet and the two regions in the middle form a longer anti-parallel sheet.
310-helical fractions are low and of similar percentages among the four models.

Figure 5.8: Four secondary structure fractions for hIAPP WT REMD simulations at
300K trajectories from four force field/solvent model combinations: ff14SB+TIP3P,
ff14SBonlysc+TIP3P, ff99SB+TIP3P, ff14SBonlysc+GBNeck2.

Since protein folding to near-native structures has been shown accessible by employing
implicit solvent (GB-Neck2) with a combination of ff14SBonlysc force field and GPUs[24],
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additionally implicit solvent suffer less from convergence issue, also this model gives similar
results to ff14SB+TIP3P of the secondary structure trend, it is reasonable to focus more
on the trajectories generated from modified side chain parameters and implicit solvent, i.e.
ff14SBonlysc and GBNeck2. Therefore, although helpful insight could also be drawn from
the trajectories generated by other force field/solvent model combinations, we focus on the
ff14SBonlysc and GBNeck2 combination for WT hIAPP and its variants.

5.4.2 Transient secondary structures in monomeric hIAPP

As α-helix structures are proposed to be relevant as the intermediate structures on the
pathway of IAPP fibril formation, we further quantify the compositions of α-helix structures.
Although up to 60% of α-helical fraction has been observed in Figure 5.8A for ff14SBonlysc
with GBNeck2 simulations, whether the percentages indicate the appearances of α-helices
simultaneously or not is not clear. In other words, it is possible that a few long α-helices are
formed, or multiple short helices are sampled transiently throughout the whole simulations.
As shown in Figure 5.9, the most often adopted α-helical length is 4, which is one helical
turn. A second peak appears at the helix length of 7, which corresponds to two consecutive
α-helical turns. With over 35% of one-turn helices but less than 13% of two-turn helices, the
α-helical composition is partially revealed; not a few long helices but multiple transient and
short helices are most often adopted by the hIAPP WT monomers in our simulations.

Figure 5.9: Percentages of helices lengths in hIAPP WT simulations with error bars cal-
culated from the standard deviation between two trajectories. The regions of α-helix are
assigned from DSSP and visualized using the tool developed as shown in Figure 5.6.
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Figure 5.10: Clustering based on monomer WT, S20G and S19G combined trajectories, with
reported percentages for WT. All the structures are the most representative structures within
each cluster. Peptide structures are colored by secondary structure, purple indicates α-helix,
blue stands for 310-helix, yellow for β-sheet, cyan for turn, and white for coil structure. The
corresponding population of this structure is at bottom of each cluster.

Furthermore, when cluster representatives are displayed in Figure 5.10, a more clear
cascade of α-helical structures are recovered from the trajectories. Among the top 15 clusters,
2 of them (cluster 7 and cluster 15) contain anti-parallel sheet structures, and the others are
made of α-,310-helix and turns.

With the largest cluster not exceeding a population size of 5%, it is ensured that dis-
ordered conformations are indeed reproduced in our simulations. The ability of our model
to successfully predict the intrinsic disorder of IAPP is encouraging, as our models were
trained against peptide energy minima and tested on native folded proteins, but the under-
lying physics shared between all proteins is the same and is possible to be reproduced by a
model of good transferability, although over-compactness has been recognized as an issue in
other studies[219, 220, 221].

5.4.3 Helical fractions and kinetic rates in IAPP variants

Despite > 86% sequence similarities among all full length IAPP variants and the mu-
tations appear after residue 18, there are still helical fraction variances observed in the
N-terminal 7-17 regions. As seen in Figure 5.11A where the point mutation in S19G and
S20G are both around the kink region, S19G compared with S20G reduces α-helical fraction
by 15%, which indicates that the N-terminal conformations are influenced by the point
mutation. Although not statistically significant, the trend that is observed in decreasing
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N-terminal α-helical fraction in the order of S20G, WT, and S19G, is actually consistent
with the decrease of kinetic rate of fibril formation in the minutes to hours time scale.

But the α-helical fraction for WT, RAT, I26P and charged C-terminus (shown in Figure
5.11B) are nearly indistinguishable considering the residue 1 to 18 N-terminal regions. RAT
sequence which starts to differ from residue 18 (H18R), is even shown to possess the highest
α-helical fraction at F15 and L16 among all. Although A25, S28 and S29 substituted by three
Proline lead to disruption of high helical structures compared to WT and charged C-termini
peptides, Proline 29 initializes a new helical region which is sampled for 30% of fraction in
the RAT simulations. The experimental findings for I26P are similar as RAT IAPP, which
also abolish amyloid formation. Similar trend is also observed in the simulation; residues
F23, G24 and A25 in I26P variant abolish α-helical formations entirely, with P26 initializing
helical fraction < 20%, with respective to much higher helical fraction in the same region in
WT.

Figure 5.11: A. Fraction of α-helical content for WT, S20G and S19G. B. Fraction of α-helical
content for WT, RAT, I26P and C acid.
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5.4.4 Dimer models proposed as the smallest oligomer

Simulated dimers deviate from the crystal conformation

Fused to maltose binding protein and solved in crystallography by Eisenberg and cowork-
ers in 2009 (PDB code: 3G7V), this hIAPP dimer structure was proposed to be an important
intermediate on the pathway of IAPP fibril formation[193]. In this crystal structure, a dimer
interface is formed by two IAPP molecules packing against each other with key contacts
being made near Phe 15, with 8–18 helices interacting at a 55◦ angle. To describe the spatial
distance and relative angle in our defined ways (see Methods 5.3.1), a N-terminal helix-helix
center of mass distance at 10.0 Å and a N1-O1-O2-N2 dihedral of 64◦ are adopted in the
crystal structure. This dimer structure at full-length was assumed to be thermodynamically
stable intermediate thus MD simulations were carried out to valid its stability. Three systems
were set up to test how stable the N-terminal helices would be when they were involved in a
dimer interface. In the hlx system, both N-terminal regions (residue 7-17) were restrained as
helices throughout the 1.8 µs of simulation, which ensures the two Phe 15 are locally exposed
for making key contacts. Another set of hyb system was used to test if one monomer helix
would promote the helical content on the other monomer. The unr system with both chains
unrestrained was compared as a control.

In all three systems, the crystal dimer conformation is not sampled frequently enough
to be considered as a thermodynamically stable structure, referring to the N-N distance
and N1-O1-O2-N2 dihedral angle with respect to the numbers in crystal structure, shown in
Figure 5.12. Although the N-N distance for both the hlx and hyb systems stay pretty close
to 10 Å, if the defined dihedral angle is examined, the hlx dimer never comes back to its
starting angle at 64◦, and the hyb dimer samples 64◦ shortly but does not stay or fluctuate
around it. In the case of unr system, the two quantities designed to characterize the spatial
relativity for helices are very noisy thus do not reflect the structural features in it.

Secondary structure fractions provide a better understanding of the structural differ-
ences in the three dimer systems. For the hyb system, it is observed that pre-formed helix
promotes the α-helical stability; compared to the unr system, the monomer that is not re-
strained to be a helix has increased the helical content by nearly 20%, which is likely due
to the intermolecular interactions with the other monomer with restrained helix. In the hlx
system, interestingly, although the helical fraction of residue 8 to 16 stays close to 100%,
the C-terminal helical content is not higher than that of the other two systems but slightly
(10%) slower. For the unr system, the N-terminal helical fraction diminishes to 50% or
less compared to 100% in the hlx system, more turn and anti-parallel sheet structures are
observed (Figure 5.13).

The α-helical (monomer2 and) dimer simulations were done using ff99SB and GBNeck2
(before the advent of ff14SBonlysc with better side chain parameters), which is different from
the four models shown in Figure 5.8. With respect to the hIAPP monomer simulations
using ff14SBonlysc+GBNeck2 and ff14SB+TIP3P, some common structural features are (1)
a turn structure formed from residue 4 to 6 is always present due to the disulfide bond
(Cys2-Cys7), and (2) the prevalent helical fractions are disrupted by Asn21 and Asn22.
However, monomer and dimer simulations using ff99SB+GBNeck2 disagree with the other

2Data not shown but archived
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Figure 5.12: The spatial positions of N-terminal helices on the α-helical dimer. A. N-terminal
helix-helix distance (termed N-N distance), measured by the center of mass distance of the
heavy atoms in residue 7-17 on one monomer to the same set of atoms on the other monomer.
The line in black is for the hlx system with both N-terminal helix restrained, the red line is
for the hyb system with one system restrained and the green line is for the unrestrained unr
system. B. The dihedral angle formed by the amide nitrogen on residue 14 and the carbonyl
oxygen on residue 10 from both monomers (termed N1-O1-O2-N2 angle). The same color
code was used in the dotted lines. The graphs were generated in Grace version 5.1.22.

two on whether the C-terminus or the N-terminus of IAPP is more helical-prone. Usually it
is the N-terminus that is thought to be more helical-prone[195, 222] and the C-terminus is
more amyloidogenic[223, 201].

Hydrophobic interactions in N-terminal helices

Although the dimer simulations do not validate the intermediate role of the crystal dimer
structure, The N-N distances of around 8 to 12 Å in the hlx and hyb systems still suggest
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Figure 5.13: Fraction of secondary structure contents for the three systems of hIAPP in
α-helical dimer simulations. The top panel is for hlx system where two N-terminal regions
from residue 7-17 are retrained to helix, the error bars are calculated from the two monomers
simulated as a dimer. The middle panel shows the secondary structure fractions for the
unrestrained monomer in the hyb system. The bottom panel is for the unr system, the
error bars are calculated from the two monomers.
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that there are strong N-terminal interactions between two monomers within a dimer system.
To further elucidate how the monomers interact with each other in the simulations, we

calculated the binding energy and decomposed to each residue. The three contact maps
show different binding modes of the three systems (Figure 5.14). Notably, in all three
systems, Phe15 from both monomers, which are suggested to have key contacts in crystal
structure, are not interacting strongly during our dimer simulations. hlx and hyb systems
share some common features, (1) N-termini of the two monomers make the strong favorable
interactions; the residues Thr9, Leu12 and Leu16 seem to be the driving force of dimer
formation in the simulations, (2) there are also favorable interactions between N-terminus of
one monomer and C-terminus of the other monomer, (3) the C-terminus of each monomer
do not seem to interact as strongly. One salient way the hyb system differs from hlx is
that the C-terminal residues 20-37 of monomer without restraints apparently interact more
frequently with the N-terminal residues 9-15 of the other monomer with N-terminal helix
restraints. To be more specific, C-terminal residues Ile26, Leu27, Thr30, Asn31, Val32 have
strong van de Waals and electrostatic interactions with Arg 11 located on N-terminus on the
other monomer. The binding energy and residue contacts in the dimer simulations suggest
that when N-terminal residues on one or both monomers are restrained to be α-helical, the
two monomers show strong N-terminus-mediated interactions, while these contacts are not
found in the unr system.

Figure 5.14: Energy decomposition map of three dimer systems. A. hlx system: two N-
terminal helices restrained; B. hyb system: monomer 1 is N-terminal helix restrained and
monomer 2 has no restraints; C. unr system: two unrestrained peptides. Graphs are gener-
ated in Origin 8.6.
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Dimers in the precursor group have not lead to fibril-like dimers

The initial setup of the N-N-termini in space for the precursor group is more close and
parallel than the control group (with average N-N terminal COM distance of 9.5 ± 0.41Å vs.
17.8 ± 7.00Å for the control group). Throughout the simulations, this feature has been kept
in both groups: (1) in the precursor group, except in two runs the two monomers in a dimer
have run apart and sometimes come back together, all the rest N-N distances are below 20
Å; (2) the N-N distances in the control group are in average large, although it contains more
simulation runs, and the distances fluctuate more(Figure 5.15A and B).

However, for secondary structures in the precursor and the control group, we do not see
significant differences between these two groups. As seen in Figure 5.15C and D, one out
of 16 precursor runs gain parallel sheet contents over time, but there is also one outstanding
system in the control group too. As seen in Figure 5.15E and F, for α-helical fraction, the
precursor group gains helical contents at the end of 2 µs of simulations and the control group
has noisier data and difficulty to directly compare against. In Figure 5.15G and H, for the
anti-parallel sheet fractions, the precursor and the control group are getting more converged
instead of diverged. 0-20% of anti-parallel sheet are maintained in the control group; even
though the precursor group starts with nearly no content of anti-parallel sheet, at least three
of runs develop > 10% of anti-parallel sheet fraction at the end, suggesting that the parallel
sheet as observed in mature fibril structure is not favored in such a dimer model.

The ideal scenario of fibril-like dimer formation in the precursor group does not hap-
pen after 2 µs of simulations, but revised expected outcomes which would differentiate the
precursor group from the control group are partially observed. The N-N distances in the
precursor group that are low throughout the simulations suggest some direct interactions
and associations of the N-termini. But it also could be explained by insufficient sampling.
The low parallel-sheet fractions observed in both groups show that parallel-sheet formations
between the in-register aligned dimers are not more frequently observed, which suggests an
invalid hypothesis, insufficient sampling or model inaccuracy.

Our models proposed at the dimeric level have not been validated but they might still be
held when the concentrations of protein molecules reach a certain threshold as larger order of
oligomers, given it is still an open question whether dimeric state of hIAPP is energetically
stable as the smallest oligomer. Also the time scale of fibril formation rate as studied in
the kinetic experiments is more than minutes, which is beyond the current computational
achievable time scale of microsecond to millisecond. Therefore, the expectations not reached
in the short time scale do not fully abolish the hypotheses nor validate them. Lastly, for
the studies of intrinsically disordered proteins (IDPs, including IAPP), protocols to validate
the all-atom computational models in reproducing the structural features of interest are in
demand; that IDPs are currently simulated to be overly compact[219, 220, 221] suggests that
their predicted secondary structure fractions may contain false positive indications, as to ac-
curately describe a rugged energy landscape is still challenging for the current computational
models.
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Figure 5.15: A and B. N-N distance over time for 16 runs of simulations in the precursor
group and 28 runs of simulations in control group; C and D. Parallel β fraction over time for
both groups; E and F. α-helical fraction over time for both groups; G and H. anti-parallel
fraction over time for both groups. For each dimer, the error bars are the standard deviations
of this quantity considering all the simulated structures before this time point.
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One of the challenges, in my opinion, comes from the contradictory requirements arising
from the structure prediction for natively folded proteins and the structural ensemble model-
ing of intrinsically disordered proteins. The observation that proteins are not stable enough
in simulations compared with experimental thermal profiles motivated the incorporation of
nonpolar term in solvation model (Chapter 2) and the evaluation of secondary structure
specificity (Chapter 3). Our findings that the current computational model still destabilizes
helical structures in CASP11 refinement trials are consistent with our previous understand-
ing of the inaccuracy in the model (Chapter 4). The modifications proposed in Chapter
2 and 3 are promising for alleviating the instability issue. However, a less compact and
coil-rich structural ensemble is exactly what disordered protein requires, which seems to be
against the necessity of stabilizing folded structures in simulations. For example, the non-
polar term was added to particularly stabilize the more compact (smaller solvent accessible
surface area) conformations, which does just the opposite effect to the goal of reproducing
physical IDP ensembles. Therefore, the diverged requirements for the folded and disordered
protein regimes are unlikely to be settled in the near future, if a universal force field and
solvent model combination is needed to accurately describe both types of protein structures.

5.5 Conclusions

To validate the important role of α-helical intermediate structure in IAPP amyloid fibril
formation, we applied MD simulations on the monomeric structures of IAPP and its vari-
ants, and built dimeric models of wild type IAPP. In rat IAPP and I26P where amyloid
fibril formation are abolished, we also observed reduced α-helical fractions in the mutated
regions. The simulated structural ensembles of WT, S20G and S19G are consistent with the
experimental kinetic rates, although the time scales of the two processes have large gap. The
two methods of building dimer models enhance our understanding in the α-helix association
and propagation of helix-to-strand transition processes. Not observing the expected results
indicate dimer might not the smallest energetically stable oligomer unit. Meanwhile, more
experimental data is in need to validate the reliability of computational modeling results.

5.6 Supporting Information
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Figure S5.1: The structures of 7 monomers selected as representative α-helical N-terminus
with extended C-terminus monomers ready for docking.
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Figure S5.2: The precursor group: 16 dimer structures docked from representative α-helical
N-terminus with extended C-terminus monomers. Dimer 11 and Dimer 12 were triplicated
due to their large similarity with the hypothesized dimer in Figure 5.4D)
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Figure S5.3: The control group: 28 dimer structures docked from representative α-helical
N-terminus with extended C-terminus monomers.
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Chapter 6

Conclusion and Prospective

Molecular modeling of proteins using Molecular Dynamics has remained an important
branch of protein modeling studies, for the understanding of physical principles in protein
folding into 3D structures dynamically and carrying out all sorts of functionality. The result-
ing more accurate structural predictions are beneficial for the disease-associated interference
such as rational drug design. In this thesis, four questions have been investigated for more
insight.

In Chapter 2, we were interested in how important the nonpolar term of
solvation is to protein structure and stability, and developed a GPU-friendly
SASA calculation algorithm to accelerate GB/SA solvation in MD simulations.
We hypothesized that previously, nonpolar term has been underestimated as a small or even
negligible term. Due to the large computational cost of SASA calculation and the incompat-
ibility with GPU of current LCPO algorithm, the applications and optimization of nonpolar
term solvation is limited by speed and accuracy. In this chapter, we demonstrated the critical
role of nonpolar solvation and quantified its effectiveness in increasing the simulated stability
of native structures. The model system HC16 set up a practical situation in which interac-
tions of nonpolar residues and their contributions to the solvation free energy were analyzed
under the spotlight; this was achieved by restraining the backbone helices and allowing three
Phenylalanine residues to sufficiently sample different conformations relevant to hydrophobic
core formation. With respect to the structural equilibria fully sampled in explicit solvent
TIP3P, we attributed the discrepancy observed between GB and TIP3P solvent results to
nonpolar solvation by reproducing the TIP3P solvent energy profile using GB/SA with a

surface tension γ at 7 cal/(mol·Å2
).

A big contribution of this work is a novel algorithm of SASA estimation, which is done
in a pairwise fashion and implemented on GPU in Amber to accelerate GB/SA simulations
by up to 30 times compared with the current algorithm LCPO. The cost of computing
SASA is minimal as it makes use of the pairwise distances that have already been calculated
for non-bonded interactions and GB solvation. It is a two-body algorithm in which only
the neighbor atoms within a certain cutoff range of a central atom are iterated for once,
therefore, there is nearly no computation overhead and is ideal for GPU parallelization. The
accuracy of this two-body method is facilitated by a pre-treatment of 30 SASA atom types,
pre-considering 1-2 bonded geometries of protein atoms. The 60 parameters were trained
against a novel scrambled peptide data set to acquire the full spectrum of atom geometries
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in protein environment. Another 30 parameters were numerically computed accordingly for
nonpolar energy calculations. The validity of this algorithm is demonstrated in small protein
GB/SA simulations with respect to LCPO algorithm.

The possible next step is to extend the algorithm for nucleic acids SASA calculations,
so that DNA, RNA and protein-nucleic acid complexes could be simulated using GB/SA on
GPUs. More long-timescale (> µs as opposed to the current ns simulations achievable if
GPU is not used) GB/SA simulations applied in protein folding, structure prediction etc.
could be beneficial to the understanding of interplay of nonpolar solvation free energy with
other energy terms, as well as the development of a next-generation nonpolar term which is
more accurate than the model developed here.

In Chapter 3, we asked whether the current all-atom force field and implicit
solvent can reproduce the amino acid backbone specificity, given all (except Glycine
and Proline) the amino acids share the backbone parameters trained on Alanine peptides.
To quantify the amino acid specificity of protein backbone in current computational mod-
els, we developed a toolbox comparing the simulated backbone dihedral angles with original
preferences in 30 high quality crystal structures. A second toolbox previously used by Best et
al [125] and Perez et al [71] was also employed for amino acid specific backbone helical propen-
sity studies. The simulated values were compared against experimental measurements. Two
tests agree on the low α stability for residues Serine, Aspartate acid, Tyrosine, Lysine and
Arginine.

The discrepancy displayed in Alanine points out new directions for understanding whether
training backbone parameters for Alanine is particularly problematic. More investigations
are needed especially designed to uncover the sequence-dependence of amino acid backbone
stability. For example, in the case of HP36 where 3 Alanine residues are thought to be
important for the native conformation stability, more in-depth understanding could be gained
from carefully controlled tests in which Alanine backbone parameter is carefully controlled as
a single variable varying from ff99SB parameter set, ff14SB parameter set and to correction-
map (CMAP) trying to reproduce QM backbone behaviors. More thoroughly designed and
validated tools are always in demand, which should provide robust evaluation benchmark
for next-generation computational model development and validations.

In Chapter 4, We evaluated how well current Amber force field and implicit
solvent perform in the CASP refinement, if unrestrained MD simulations are
applied. CASP11 refinement data set served as a good set of proteins of diverse secondary
structure compositions. The stability of native structures in MD simulations were evaluated
first. By comparing the RMSD deviation of simulations starting from native structures,
helix bundle structures were identified to be the least stable in ff14SBonlysc and GBNeck2.
It also brought in difficulties in refining the helical secondary structure rich template struc-
tures. Cluster analysis of all the refinement trajectories indicates a strong correlation of
cluster size and refinement confidence; the larger is the most populated a cluster, the more
likely this cluster belongs to a refined or close-to-refined structural ensemble, thus it is more
confident that our computational model could get this template structure refined without
prior knowledge of experimental structure.

As pointed out in some of the cases where the overall tertiary structures were refined
while local secondary structure preferences were in bad shape, for example in the case of
TR829, a reasonable future direction is to test the two hypothesis: the lack of nonpolar
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term and/or instability of dihedral angles in α. After all, these observations motivated the
development of the two projects elaborated in the previous two chapters (Chapter 2 and
Chapter 3).

In Chapter 5, we tackled another very challenging problem: protein aggregation. We
asked if MD simulations of low-order oligomers of amyloid-forming protein IAPP
could shed light on its fibril initialization mechanism. In wild type IAPP monomer
simulations, similar secondary structure preferences were observed when two computational
models were employed, which are ff14SBonlysc with GBNeck2 and ff14SB with TIP3P. The
α-helical characteristics of monomeric IAPP and its variants were compared and further
analyzed, in which two major conclusions could be drawn. Firstly, the predicted α-helical
fractions are consistent with the macroscopic fibril formation rate, although that do not
explain the mechanism of fibril initialization. Secondly, the majority of α-helices adopted in
simulations are short helices, meaning they are transient and short-lived, which is consistent
with the experimental findings about IAPP as it is intrinsically disordered. The dimer
models were designed under the hypothesis that the smallest unit of IAPP initialization is
two molecules and they aggregate though the N-terminal helical regions with propagation to
form C-terminal parallel sheet. Although the hypotheses were not validated after preliminary
tests, these findings will provide insight and experience for further studies.

In this thesis, more than 100 peptides or proteins were investigated in silico at the atomic
level and a good number of them were solved from naturally found proteins which perform
functional roles in different species. For example HP36 is a subdomain of chicken villin
headpiece that functions together with muscle-related protein actin. However, it is mainly
from specially designed ”model systems” that we answered particular questions and learned
the most of how to improve protein modeling accuracy. For example in Chapter 2, we de-
rived HC16 model system as a representative structure of the hydrophobic core of HP36 and
carefully controlled nonpolar term as a single variable. To get a full spectrum of all possible
types of atomic geometries in proteins, we designed scrambled peptides each containing all
20 amino acids. Another example is in Chapter 3, where a particular amino acid substi-
tuting in (AAXAA)3 peptides were especially designed and characterized in experiments for
amino acid specificity studies. For the future studies of issue diagnosis in similar scenarios,
more toy models should be designed for answering challenging questions when the interplay
of different terms are complicated and the outcomes are hard to separate.
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